Neste trabalho descrevemos uma classificação geral das representações da equação de Dirac em 1+1 dimensões. Na classificação são incluídas as representações nas quais cada matriz de Dirac β, α é associada a uma única matriz de Pauli. Esta classificação inclui 6 representações principais. A inclusão das representações com sinais modificados das matrizes de Pauli aumenta o número de representações distintas até 24. Determinamos as transformações unitárias entre todas as representações na forma explícita. O estudo da estrutura do conjunto das transformações leva à conclusão de que todas as representações são equivalentes, isto é, uma representação pode ser obtida a partir de qualquer outra por uma transformação unitária. Estabelecemos que o conjunto das transformações forma um grupo não abeliano com respeito ao produto matricial em classes de equivalência, definidas através da indistinguibilidade das transformações que diferem por um fator de fase. Este grupo possui um subgrupo não trivial, o qual por sua vez contém dois subgrupos não triviais. Apresentamos a forma geral das matrizes de Dirac em 1+1 dimensões determinada por 3 parâmetros arbitrários. Demonstramos a existência de isomorfismo entre o par das matrizes de Dirac e o par de vetores unitários ortogonais. Apresentamos também aplicações dos resultados obtidos neste trabalho.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.