It is generally accepted that the selective binding of enantiomers of the chiral analyte to a chiral selector is necessary for enantioseparations in CE, whereas the role of mobility differences between the temporary diastereomeric associates formed between the enantiomers and the chiral selector has been commonly neglected. One of the authors of this study suggested in 1997 that the mobility difference between the diastereomeric associates of two enantiomers with the chiral selector may be solely responsible for a separation of enantiomers in CE and enantioselective selector-selectand binding may be not necessarily required. Several indirect confirmations of this hypothesis have been described in the literature within the last few years but a dedicated study proving this concept has not been published yet. The present data obtained for the two chiral antimycotic drugs ketoconazole and terconazole by CE and NMR spectroscopy unequivocally support this concept.
Fundamentals of electrochromatography are reviewed in this work. Theory of solute migration and band broadening is included. The types of columns used (packed capillary and open tubular columns) and their influence on efficiency are shown. The most important applications of this technique are described.
Sensitive chiral analysis by CE: An updateA general view of the different strategies used in the last years to enhance the detection sensitivity in chiral analysis by CE is provided in this article. With this purpose and in order to update the previous review by García-Ruiz et al., the articles appeared on this subject from January 2005 to March 2007 are considered. Three were the main strategies employed to increase the detection sensitivity in chiral analysis by CE: (i) the use of off-line sample treatment techniques, (ii) the employment of in-capillary preconcentration techniques based on electrophoretic principles, and (iii) the use of alternative detection systems to the widely employed on-column UV-Vis absorption detection. Combinations of two or three of the above-mentioned strategies gave rise to adequate concentration detection limits up to 10 210 M enabling enantiomer analysis in a variety of real samples including complex biological matrices.
In this study, the enantiomer migration order (EMO) of norephedrine (NEP) in the presence of various CDs was investigated by CE. NMR and CE techniques were used to analyze the mechanism of the chiral recognition between NEP enantiomers and four CDs, i.e., native α-CD, β-CD, heptakis(2,3-di-O-acetyl-6-O-sulfo)-β-CD (HDAS-β-CD), and heptakis(2,3-di-O-methyl-6-O-sulfo)-β-CD (HDMS-β-CD). EMO was reversed in the presence of α-CD and β-CD, although only minor differences in the structures of the complexes formed between NEP and these CDs could be derived from rotating frame nuclear Overhauser experiments (ROESY). The complexes between the enantiomers of NEP and the sulfated CDs, HDMS-β-CD, and HDAS-β-CD, were substantially different. However, EMO of NEP was identical in the presence of these CDs. HDAS-β-CD proved to be the most suitable chiral selector for the CE enantioseparation of NEP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.