Two varieties of banana green fruit growing in Guerrero, Mexico, were used for starch isolation. Chemical analysis and physicochemical and functional properties were studied in these starches. The "macho" variety presented higher starch yield than "criollo". In general, chemical compositions in both starches were similar, except in ash content, where the "criollo" variety showed a lower value than "macho". The results of freeze-thaw stability suggested that banana starches cannot be used in frozen products. Both starches presented similar water retention capacity values that increased when temperature increased. Solubility profiles showed that at low temperature "criollo" had lower solubility than "macho", but at higher temperature an inverse behavior was evident; also the solubility increased when temperature increased. Behavior similar to that for solubility was obtained in the swelling test. The banana starch studies indicate the "macho" and "criollo" varieties have different starch structures as evidenced by viscosity.
Sensitive chiral analysis by CE: An updateA general view of the different strategies used in the last years to enhance the detection sensitivity in chiral analysis by CE is provided in this article. With this purpose and in order to update the previous review by García-Ruiz et al., the articles appeared on this subject from January 2005 to March 2007 are considered. Three were the main strategies employed to increase the detection sensitivity in chiral analysis by CE: (i) the use of off-line sample treatment techniques, (ii) the employment of in-capillary preconcentration techniques based on electrophoretic principles, and (iii) the use of alternative detection systems to the widely employed on-column UV-Vis absorption detection. Combinations of two or three of the above-mentioned strategies gave rise to adequate concentration detection limits up to 10 210 M enabling enantiomer analysis in a variety of real samples including complex biological matrices.
The production of resistant starch from non-conventional sources using an extruder was studied. Starch was isolated from unripe banana and mango fruits, commercial corn starch was used for comparison purposes. Moisture, ash and fat content were higher in non-conventional starch sources than in corn starch, but corn starch presented a lower protein and dietary fibre content than banana and mango starches. Amylose content was higher in banana and mango starches than in corn starch. Besides, mango had the smallest granule size (5–10 m). Extruded mango had the lowest solubility which may be related with the granule size, and in the case of the swelling, extruded products from corn starch had the highest values, a pattern that may be due to the amylose/amylopectin ratio, because corn starch had the lowest amylose content of the starches studied. Extruded products from mango presented a resistant starch (RS) content that decreased when the screw speed increased, for banana starch, the RS values from the extruded products was similar at 30 rpm and 65 rpm, and at 40 rpm it was the highest. In the case of retrograded resistant starch (RRS), the values of the extruded products prepared with non-conventional starches had a defined pattern, because they decreased when screw speed increased.
A new analytical methodology based on capillary electrophoresis-mass spectrometry (CE-MS(2)) is presented in this work, enabling the identification and determination of six non-protein amino acids (ornithine, β-alanine, GABA, alloisoleucine, citrulline and pyroglutamic acid) in vegetable oils. This methodology is based on a previous derivatization with butanol and subsequent separation using acidic conditions followed by on-line coupling to an ion trap analyzer for MS(2) detection established through an electrospray-coaxial sheath flow interface. The electrophoretic and interface parameters were optimized obtaining the separation of all compounds in less than 15 min and with resolutions higher than 5. The proposed method was validated by assessing its accuracy, precision (RSD<7% for corrected peak areas), LODs and LOQs (between 0.04-0.19 ng/g and 0.06-0.31 ng/g, respectively) and linearity range (R(2)>0.99), and it was used in order to identify the selected non-protein amino acids in soybean oils, sunflower oils, corn oils and extra virgin olive oils. MS(2) experiments performed the fingerprint fragmentation of these compounds allowing to corroborate ornithine and alloisoleucine in seed oils but not in olive oils. The method was applied to identify and quantify olive oil adulterations with soybean oil detecting in a single run the amino acids in mixtures up to 2% (w/w). The results showed a high potential in using these compounds as novel markers for the detection of adulterations of extra virgin olive oils with seed oils. Thus, the developed method could be considered a simple, rapid and reliable method for the quality evaluation of extra virgin olive oil permitting its authentication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.