The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures, followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants. Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation) was determined in the low irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase, respectively) is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant contribution of Prochlorococcus to the global primary production, these findings have strong implications for the understanding of the phytoplankton role in the carbon cycle in nature. Besides, the ability of assimilating carbon molecules could provide additional hints to comprehend the ecological success of Prochlorococcus.
Marine picocyanobacteria of the Prochlorococcus and Synechococcus genera have been longtime considered as autotrophic organisms. However, compelling evidence published over the last 15 years shows that these organisms can use different organic compounds containing key elements to survive in oligotrophic oceans, such as N (amino acids, amino sugars), S (dimethylsulfoniopropionate, DMSP), or P (ATP). Furthermore, marine picocyanobacteria can also take up glucose and use it as a source of carbon and energy, despite the fact that this compound is devoid of limiting elements and can also be synthesized by using standard metabolic pathways. This review will outline the main findings suggesting mixotrophy in the marine picocyanobacteria Prochlorococcus and Synechococcus, and its ecological relevance for these important primary producers.
The ability to assimilate nitrate in non-axenic isolates of Prochlorococcus spp. was addressed in this work, particularly in three low-irradiance adapted strains originating from ocean depths with measurable nitrate concentrations. None of the studied strains was able to use nitrate as the sole nitrogen source. Nitrate reductase (NR; EC 1.6.6.2) activity was, however, detected using the methyl viologen/dithionite assay in crude extracts from all studied Prochlorococcus strains. Characterization of this activity unambiguously demonstrated its enzymatic origin. We observed that NR activity did not decrease in vivo under darkness. Attempts to detect the narB gene (coding for NR in other cyanobacteria) by PCR with primers designed on the basis of the specific codon usage in Prochlorococcus were unsuccessful. However, when primers were designed considering the codon frequencies typical of other bacteria, we could amplify different fragments of nas genes, coding for bacterial assimilatory NRs. Similar amplification products were obtained using colonies of contaminant bacteria from Prochlorococcus cultures as PCR template. Furthermore, NR activity was found in cultures of these contaminants, demonstrating the non-cyanobacterial origin of the enzyme. These results strongly suggest that the studied strains of Prochlorococcus lack NR, in spite of inhabiting environments with nitrate as the main nitrogen source. In addition, they indicate that the nitrite produced by heterotrophic bacteria is not transferred to Prochlorococcus for growth, thus discarding a trophic nitrogen chain between heterotrophic bacteria and Prochlorococcus in the studied cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.