This paper presents a general displacement reconstruction algorithm for sensors based on self-mixing (SM) interferometry suitable to work at different optical feedback conditions. The approach relies on a robust phase observation through analytic signals for the fringe detection stage, while the motion of the pointed target is retrieved by a self-adapting filter in a piece-wise basis. The implementation for real-time calculations demonstrates the feasibility of robust SM sensors for different usage conditions without the need of modifying the base device configuration.
A robust phase measurement method to detect self-mixing signals from rough surface targets is addressed. Using the Hilbert transform to create the analytic signal of the monitored optical output power, an accurate instantaneous phase can be extracted without being affected by amplitude variations induced by the speckle phenomenon. In case of fringe fading, a running average filter removes the local bias offset improving the calculations. This also allows one to observe the phase at dynamic feedback levels within the same calculation, avoiding the need of adding external optical, mechanical or electronic components. This method provides confidence for the fringe detection required in subsequent steps to reach subwavelength precision of a reconstructed displacement or for velocimetry applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.