Concerns about meat authenticity are increasing recently, due to great fraud scandals. This paper analysed real samples (43 adulterated and 12 controls) originated from criminal networks dismantled by the Brazilian Police. This fraud consisted of injecting solutions of non-meat ingredients (NaCl, phosphates, carrageenan, maltodextrin) in bovine meat, aiming to increase its water holding capacity. Five physico-chemical variables were determined, protein, ash, chloride, sodium, phosphate. Additionally, infrared spectra were recorded. Supervised classification PLS-DA models were built with each data set individually, but the best model was obtained with data fusion, correctly detecting 91% of the adulterated samples. From this model, a variable selection based on the highest VIPscores was performed and a new data fusion model was built with only one chemical variable, providing slightly lower predictions, but a good cost/performance ratio. Finally, some of the selected infrared bands were specifically associated to the presence of adulterants NaCl, tripolyphosphate and carrageenan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.