Concerns about meat authenticity are increasing recently, due to great fraud scandals. This paper analysed real samples (43 adulterated and 12 controls) originated from criminal networks dismantled by the Brazilian Police. This fraud consisted of injecting solutions of non-meat ingredients (NaCl, phosphates, carrageenan, maltodextrin) in bovine meat, aiming to increase its water holding capacity. Five physico-chemical variables were determined, protein, ash, chloride, sodium, phosphate. Additionally, infrared spectra were recorded. Supervised classification PLS-DA models were built with each data set individually, but the best model was obtained with data fusion, correctly detecting 91% of the adulterated samples. From this model, a variable selection based on the highest VIPscores was performed and a new data fusion model was built with only one chemical variable, providing slightly lower predictions, but a good cost/performance ratio. Finally, some of the selected infrared bands were specifically associated to the presence of adulterants NaCl, tripolyphosphate and carrageenan.
O objetivo deste trabalho foi desenvolver uma metodologia quimiométrica para descrever o perfil químico de amostras de cocaína apreendidas no estado de Minas Gerais (Brasil). A identificação de adulterantes e a quantificação do teor de cocaína foram feitas por cromatografia gasosa acoplada à espectrometria de massa (GC-MS). Espectros de 91 amostras foram obtidos por espectroscopia no infravermelho usando refletância total atenuada (ATR-FTIR), e utilizados na construção de um modelo de análise de componentes principais (PCA). A primeira componente principal (PC1) discriminou as amostras de maior pureza das mais diluídas/adulteradas, nas quais foram identificadas lidocaína, cafeína e benzocaína. PC2 discriminou a forma química da cocaína, cloridrato ou base. Além disso, dois modelos supervisionados discriminantes (mínimos quadrados parciais para análise discriminante, PLS-DA) foram desenvolvidos para classificar as amostras em função de sua diluição (abaixo e acima de 15% m/m) e de sua forma química, apresentando taxas de acerto que variaram entre 83 e 97%. Os modelos de classificação constituem uma ferramenta simples, rápida e não destrutiva, de grande valor para peritos forenses e investigadores criminais.The aim of this article was to develop a chemometric methodology for determining the chemical profile of cocaine samples seized in Minas Gerais State, Brazil. The adulterant detection and the cocaine determination were performed by gas chromatography-mass spectrometry (GC-MS). Spectra of 91 samples were obtained by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and used to build an exploratory principal component analysis (PCA) model. The first principal component (PC1) discriminated samples of more purity from the more diluted/adulterated ones, which were characterized by the presence of lidocaine, caffeine and benzocaine. PC2 discriminated the two chemical forms of cocaine, hydrochloride and base. In addition, two supervised discriminant partial least-squares models (partial least-squares discriminant analysis, PLS-DA) were developed for classifying the samples according to dilution (above and below 15% m/m) and chemical form, with a rate of success that varied between 83 and 97%. The classification models constitute a simple, rapid and non-destructive tool, of great value for both forensic experts and criminal investigators. Keywords: illicit drugs, MID infrared, principal component analysis, cocaine, chemometrics IntroductionCocaine is an alkaloid extracted from plants of the genera Erythroxylum (E. novagranatense and E. coca). United Nations Office on Drugs and Crime (UNODC) considers cocaine, after heroin, the second most problematic drug worldwide in terms of negative health consequences and probably the most problematic drug in terms of trafficking-related violence. Estimates suggest that 440 t of pure cocaine were consumed in the world in 2009, which would be in line with a total production estimate of 1,111 t, wholesale purity-adjusted seizures Analysis of Seized Cocain...
O objetivo deste trabalho foi desenvolver uma metodologia quimiométrica para descrever o perfil químico de amostras de cocaína apreendidas no estado de Minas Gerais (Brasil). A identificação de adulterantes e a quantificação do teor de cocaína foram feitas por cromatografia gasosa acoplada à espectrometria de massa (GC-MS). Espectros de 91 amostras foram obtidos por espectroscopia no infravermelho usando refletância total atenuada (ATR-FTIR), e utilizados na construção de um modelo de análise de componentes principais (PCA). A primeira componente principal (PC1) discriminou as amostras de maior pureza das mais diluídas/adulteradas, nas quais foram identificadas lidocaína, cafeína e benzocaína. PC2 discriminou a forma química da cocaína, cloridrato ou base. Além disso, dois modelos supervisionados discriminantes (mínimos quadrados parciais para análise discriminante, PLS-DA) foram desenvolvidos para classificar as amostras em função de sua diluição (abaixo e acima de 15% m/m) e de sua forma química, apresentando taxas de acerto que variaram entre 83 e 97%. Os modelos de classificação constituem uma ferramenta simples, rápida e não destrutiva, de grande valor para peritos forenses e investigadores criminais. The aim of this article was to develop a chemometric methodology for determining the chemical profile of cocaine samples seized in Minas Gerais State, Brazil. The adulterant detection and the cocaine determination were performed by gas chromatography-mass spectrometry (GC-MS). Spectra of 91 samples were obtained by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and used to build an exploratory principal component analysis (PCA) model. The first principal component (PC1) discriminated samples of more purity from the more diluted/adulterated ones, which were characterized by the presence of lidocaine, caffeine and benzocaine. PC2 discriminated the two chemical forms of cocaine, hydrochloride and base. In addition, two supervised discriminant partial least-squares models (partial least-squares discriminant analysis, PLS-DA) were developed for classifying the samples according to dilution (above and below 15% m/m) and chemical form, with a rate of success that varied between 83 and 97%. The classification models constitute a simple, rapid and non-destructive tool, of great value for both forensic experts and criminal investigators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.