This work investigates the flexural behavior of a composite sandwich made of flax fibers reinforced skin facings and an agglomerated cork core, to be employed as an eco-friendly solution for the making of structural components of small sailing boats. An experimental mechanical characterization of the strength and stiffness flexural behavior of the proposed sandwich is carried out, providing a comparison of performances from three implemented assembling techniques: hand-lay-up, vacuum bagging and resin infusion. Sandwich beams have been tested under three point bending (TPB) at various span lengths. A procedure is also proposed and implemented to consider the potential influence of the local elastic indentation in the experimental evaluation of the flexural stiffness. This procedure is based on the analytical solution of an indented beam resting on a fully backed Winkler foundation
The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously “yielded” samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material.
In this paper, most significant steps involved during the whole process of designing a sailing yacht are outlined. In particular, a novel simultaneous approach has been proposed to optimize the design process of a sailing yacht. Analytical resistance prediction models are simultaneously used with CAD systems and computational fluid dynamics tools to find, in the more effective way, the best solution for the chosen design conditions. As a general rule, in fact, once the target point has been decided, task of the designer is the definition of those systems of aerodynamic and hydrodynamic forces that are in equilibrium when the boat sails at its target. Unfortunately, a multi-purpose yacht does not exist. If the target point is in upwind sailing then, performances will be better for such a condition and worse for others. The effectiveness of the proposed procedure has been tested by means of a case study related to the design of hull, appendages and sails of a 15” yacht subject to box-rules, designed and manufactured at the University of Palermo
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.