The number of Internet-of-Things (IoT) devices actively communicating across the Internet is continually increasing, as these devices are deployed across a variety of sectors, constantly transferring private data across the Internet. Due to the extensive deployment of such devices, the continuous discovery and persistence of IoT-centric vulnerabilities in protocols, applications, hardware, and the improper management of such IoT devices has resulted in the rampant, uncontrolled spread of malware threatening consumer IoT devices. To this end, this work adopts a novel, macroscopic methodology for fingerprinting Internet-scale compromised IoT devices, revealing crucial cyber threat intelligence on the insecurity of consumer IoT devices. By developing data-driven techniques rooted in machine learning methods and analyzing 3.6 TB of network traffic data, we discover 855,916 compromised IP addresses, with 310,164 fingerprinted as IoT. Further analysis reveals China and Brazil to be hosting the most significant population of compromised IoT devices (100,000 and 55,000, respectively). Additionally, we provide a longitudinal analysis on data from one year ago against this work, revealing the evolving trends of IoT exploitation, such as the increased number of vendors targeted by malware, rising from 50 to 131. Moreover, countries such as China (420% increased infected IoT count) and Indonesia (177% increased infected IoT count) have seen notably high increases in infection rates. Last, we compare our geographic results against Global Cybersecurity Index (GCI) ratings, verifying that countries with high GCI ratings, such as the Netherlands and Germany, had relatively low infection rates. However, upon further inspection, we find that the GCI rate does not accurately represent the consumer IoT market, with countries such as China and Russia being rated with “high” CGI scores, yet hosting a large population of infected consumer IoT devices.
The insecurity of the Internet-of-Things (IoT) paradigm continues to wreak havoc in consumer and critical infrastructure realms. Several challenges impede addressing IoT security at large, including, the lack of IoT-centric data that can be collected, analyzed and correlated, due to the highly heterogeneous nature of such devices and their widespread deployments in Internet-wide environments. To this end, this paper explores macroscopic, passive empirical data to shed light on this evolving threat phenomena. This not only aims at classifying and inferring Internet-scale compromised IoT devices by solely observing such one-way network traffic, but also endeavors to uncover, track and report on orchestrated "in the wild" IoT botnets. Initially, to prepare the effective utilization of such data, a novel probabilistic model is designed and developed to cleanse such traffic from noise samples (i.e., misconfiguration traffic). Subsequently, several shallow and deep learning models are evaluated to ultimately design and develop a multi-window convolution neural network trained on active and passive measurements to accurately identify compromised IoT devices. Consequently, to infer orchestrated and unsolicited activities that have been generated by well-coordinated IoT botnets, hierarchical agglomerative clustering is deployed by scrutinizing a set of innovative and efficient network feature sets. By analyzing 3.6 TB of recent darknet traffic, the proposed approach uncovers a momentous 440,000 compromised IoT devices and generates evidence-based artifacts related to 350 IoT botnets. While some of these detected botnets refer to previously documented campaigns such as the Hide and Seek, Hajime and Fbot, other events illustrate evolving threats such as those with cryptojacking capabilities and those that are targeting industrial control system communication and control services. CCS CONCEPTS • Security and privacy → Embedded systems security; Network security; • Computing methodologies → Classification and regression trees; Neural networks.
Carolina (USC). Dr. Crichigno's research focuses on practical implementation of high-speed networks and network security, custom protocol development using P4 switches, experimental evaluation of congestion control algorithms, and scalable flow-based intrusion detection systems. He is the Principal Investigator of multiple research initiatives involving high-speed and next-generation networks. Dr. Crichigno has served as a reviewer and a TPC member of journals and conferences, such as the IEEE Transactions on Mobile Computing, IEEE Access, IEEE Globecom, and others. He has also served as a panelist for the National Science Foundation, for programs related to advanced cyberinfrastructure and undergraduate and graduate education. He is an ABET Evaluator representing the IEEE. High-throughput Networking and Cybersecurity using a Private Cloud Abstract. This paper describes the deployment of a private cloud and the development of virtual laboratories and companion material to teach and train engineering students and Information Technology (IT) professionals in high-throughput networks and cybersecurity. The material and platform, deployed at the University of South Carolina, are also used by other institutions to support regular academic courses, self-pace training of professional IT staff, and workshops across the country. The private cloud is used to deploy scenarios consisting of high-speed networks (up to 50 Gbps), multi-domain environments emulating internetworks, and infrastructures under cyber-attacks using live traffic.For regular academic courses, the virtual laboratories have been adopted by institutions in different states to supplement theoretical material with hands-on activities in IT, electrical engineering, and computer science programs. Topics include Local Area Networks (LANs), congestion-control algorithms, performance tools used to emulate wide area networks (WANs) and their attributes (packet loss, reordering, corruption, latency, jitter, etc.), data transfer applications for high-speed networks, queueing delay and buffer size in routers and switches, active monitoring of multidomain systems, high-performance cybersecurity tools such as Zeek's intrusion detection systems, and others.The training platform has been also used by IT professionals from more than 30 states, for selfpace training. The material provides training on topics beyond general-purpose networks, which are usually overlooked by practitioners and researchers. Additionally, the platform has supported workshops organized across the country. Workshops are co-organized with organizations that operate large backbone networks connecting research centers and national laboratories, and colleges and universities conducting teaching and research activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.