Uncontrolled urban growth causes a number of problems associated with land use, stormwater management and energy generation. Sustainable Urban Drainage Systems (SUDS) are positioned as an alternative to traditional constructive solutions, contributing towards the generation of multifunctional urban spaces for efficient stormwater management and energy consumption reduction. Nevertheless, this combined goal calls for a deeper understanding of the heat transfer processes that govern the temperature performance in SUDS in order to be further validated as infrastructure to house renewable energy elements. This study intends to determine the thermal properties of two types of blue roofs under extreme conditions of performance (wet and dry), depicting the operation features of their layers and comparing their performances based on the materials used. With this aim, a hybrid experimental methodology, combining laboratory and numerical modelling, was designed using standardized equipment (ISO 8990:1994 and ASTM C1363-05), improving previous methods proposed in the study of the thermal properties of SUDS. The section with expanded clay improved the hydraulic capacity by 4.8%. The section without expanded clay increased its thermal transmittance value by 64.9% under wet conditions. It was also found that the presence of water increased the equivalent thermal conductivity in both sections by 60%.
Spain has been pinpointed as one of the European countries at major risk of extreme urban events. Thus, Spanish cities pursue new urban plans to increase their resilience. In this scenario, experiences in the implementation of Sustainable Urban Drainage Systems (SUDS) have increased substantially. Nevertheless, few cities have developed a global urban strategy for SUDS, lacking, in many cases, a method to identify strategic areas to maximize their synergetic benefits. Furthermore, there is still a need for a holistic Multicriteria Decision Analysis (MCDA) framework that considers the four pillars of SUDS design. The city of Gijón, NW Spain, has been selected as a case study due to its environmental and climatic stresses. This research presents the methodology developed for this city, which aims to analyze the need for SUDS implementation throughout the identification of strategic areas. With this aim, a combination of Geographic Information System (GIS) software and the MCDA Analytical Hierarchical Process (AHP) were proposed. The results show the potential for SUDS’ implementation, according to nine criteria related to the SUDS’ design pillars. We found that the areas where the implementation of SUDS would bring the greatest functional, environmental and social benefits are mainly located in consolidated urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.