Land-use change due to rapid urbanization poses a threat to urban environments, which are in need of multifunctional green solutions to face complex future socio-ecological and climate scenarios. Urban regeneration strategies, bringing green infrastructure, are currently using sustainable urban drainage systems to exploit the provision of ecosystem services and their wider benefits. The link between food, energy and water depicts a technological knowledge gap, represented by previous attempts to investigate the combination between ground source heat pump and permeable pavement systems. This research aims to transfer these concepts into greener sustainable urban drainage systems like wet swales. A 1:2 scaled laboratory models were built and analysed under a range of ground source heat pump temperatures (20–50 °C). Behavioral models of vertical and inlet/outlet temperature difference within the system were developed, achieving high R2, representing the first attempt to describe the thermal performance of wet swales in literature when designed alongside ground source heat pump elements. Statistical analyses showed the impact of ambient temperature and the heating source at different scales in all layers, as well as, the resilience to heating processes, recovering their initial thermal state within 16 h after the heating stage.
Vegetated swales are a popular sustainable drainage system (SuDS) used in a wide range of environments from urban areas and transport infrastructure, to rural environments, sub-urban and natural catchments. Despite the fact that vegetated swales, also known as grassed swales, have received scientific attention over recent years, especially from a hydrological perspective, there is a need for further research in the field, with long-term monitoring. In addition, vegetated swales introduce further difficulties, such as the biological growth occurring in their surface layer, as well as the biological evolution taking place in them. New developments, such as the implementation of thermal devices within the cross-section of green SuDS for energy saving purposes, require a better understanding of the long-term performance of the surface temperature of swales. This research aims to contribute to a better understanding of these knowledge gaps through a descriptive analysis of a vegetated swale in Ryton, Coventry, UK, under a Cfb Köppen climatic classification and a mixed rural and peri-urban scenario. Precipitation and temperature patterns associated with seasonality effects were identified. Furthermore, a level of biological evolution was described due to the lack of periodical and planned maintenance activities, reporting the presence of both plant species and pollinators. Only one event of flooding was identified during the three hydrological years monitored in this research study, showing a robust performance.
Lack of city space and conventional drainage systems failures have derived in the need to implement Green Stormwater Infrastructure (GSI) techniques which provide multifunctional areas capable of managing stormwater, treating the pollutants present in the runoff, bringing back biodiversity to the urban environment, and providing amenity whilst improving livability. In this context, swales were studied as a potential multifunctional GSI for water management and energy saving. This research successfully proposed the combination of a wet swale with a Ground Source Heat Pump (GSHP) system. The materials used within the cross section of a standard wet swale provided good isolation properties within the temperature performance ranges (20–50 °C), showing great potential for a swale to be developed together with GSHP elements, opening a new research area for water management and energy saving.
Uncontrolled urban growth causes a number of problems associated with land use, stormwater management and energy generation. Sustainable Urban Drainage Systems (SUDS) are positioned as an alternative to traditional constructive solutions, contributing towards the generation of multifunctional urban spaces for efficient stormwater management and energy consumption reduction. Nevertheless, this combined goal calls for a deeper understanding of the heat transfer processes that govern the temperature performance in SUDS in order to be further validated as infrastructure to house renewable energy elements. This study intends to determine the thermal properties of two types of blue roofs under extreme conditions of performance (wet and dry), depicting the operation features of their layers and comparing their performances based on the materials used. With this aim, a hybrid experimental methodology, combining laboratory and numerical modelling, was designed using standardized equipment (ISO 8990:1994 and ASTM C1363-05), improving previous methods proposed in the study of the thermal properties of SUDS. The section with expanded clay improved the hydraulic capacity by 4.8%. The section without expanded clay increased its thermal transmittance value by 64.9% under wet conditions. It was also found that the presence of water increased the equivalent thermal conductivity in both sections by 60%.
Spain has been pinpointed as one of the European countries at major risk of extreme urban events. Thus, Spanish cities pursue new urban plans to increase their resilience. In this scenario, experiences in the implementation of Sustainable Urban Drainage Systems (SUDS) have increased substantially. Nevertheless, few cities have developed a global urban strategy for SUDS, lacking, in many cases, a method to identify strategic areas to maximize their synergetic benefits. Furthermore, there is still a need for a holistic Multicriteria Decision Analysis (MCDA) framework that considers the four pillars of SUDS design. The city of Gijón, NW Spain, has been selected as a case study due to its environmental and climatic stresses. This research presents the methodology developed for this city, which aims to analyze the need for SUDS implementation throughout the identification of strategic areas. With this aim, a combination of Geographic Information System (GIS) software and the MCDA Analytical Hierarchical Process (AHP) were proposed. The results show the potential for SUDS’ implementation, according to nine criteria related to the SUDS’ design pillars. We found that the areas where the implementation of SUDS would bring the greatest functional, environmental and social benefits are mainly located in consolidated urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.