We used immunohistochemical techniques and confocal microscopy to study the morphometry of myelinated nerve endings in glabrous and hairy skin. A total of 30 healthy volunteers took part in this study designed to assess the possibility of obtaining reliable information on myelinated fibers using samples of hairy skin and to determine whether differences exist between myelinated terminations from different sites. We obtained consistent information on cutaneous myelinated terminations using hairy as well as glabrous skin samples. Myelinated endings from hairy and glabrous skin differ in density and distribution. However, from a comparison of our findings with data from nerve biopsy studies, we conclude that all cutaneous myelinated terminations are thinner terminal branches of large myelinated A beta fibers, whereas cutaneous terminations of small myelinated A delta fibers lose their myelin before entering the dermis and become indistinguishable from C-fiber terminations. The classic criteria, based on fiber size, used to distinguish myelinated fiber subgroups in sensory nerves are therefore not suitable for identifying myelinated terminations in the skin.
Lung ultrasound (LUS) in the emergency department (ED) has shown a significant role in the diagnostic workup of pulmonary edema, pneumothorax and pleural effusions. The aim of this study is to assess the reliability of LUS for the diagnosis of acute pneumonia compared to chest X-ray (CXR) study. The study was conducted from September 2013 to March 2015. 107 patients were admitted to the ED with a clinical appearance of pneumonia. All the patients underwent a CXR study, read by a radiologist, and an LUS, performed by a trained ED physician on duty. Among the 105 patients, 68 were given a final diagnosis of pneumonia. We found a sensitivity of 0.985 and a specificity of 0.649 for LUS, and a sensitivity of 0.735 and specificity of 0.595 for CXR. The positive predictive value for LUS was 0.838 against 0.7 for CXR. The negative predictive value of LUS was 0.960 versus 0.550 for CXR. This study has shown sensitivity, positive predictive value and negative predictive value of LUS compared to the CXR study for the diagnosis of acute pneumonia. These results suggest the use of bedside thoracic US first-line diagnostic tool in patients with suspected pneumonia.
The aim of this study was to explore the role of lung ultrasound (LUS) in the diagnosis of SARS-CoV-2 infection and to verify its utility in the prediction of lung disease's severity and outcome. Fifty-three consecutive patients presenting to the Emergency Department of Santa Maria delle Grazie Hospital with high suspicion of SARS-CoV-2 infection underwent diagnostic test for SARS-CoV-2 on samples obtained from nasopharyngeal swab as well as complete proper diagnostic work-up that included clinical evaluation, laboratory tests, blood gas analyses, chest CT and LUS. A semiquantitative analysis of B-lines distribution was performed to calculate the LUS score. Patients were divided into two groups according to the results of both SARS-CoV-2 diagnostic test and other exams (Group A = pneumonia due to SARS-CoV2 infection vs Group B = no SARS-CoV2 infection and another definite diagnosis). LUS showed an excellent accuracy in predicting the diagnosis of SARS-CoV-2 infection (area under the ROC curve of 0.92 with a sensibility of 73% and a specificity of 89% a the cutoff of 12.5). LUS score was more impaired in SARS-CoV-2 patients (18.1 ± 6.0 vs 7.6 ± 5.9, p < 0.00001) and it is significantly negatively correlated with PF ratio values (r = − 0.719, p < 0.0001). An intrahospital mortality rate of 46% was found; patients with adverse outcome had significant higher value of LUS, PF, LDH, and APACHE II score. None of these parameters was predictive of mortality. LUS is a useful tool for the early detection of SARS-CoV-2 infection and for the evaluation of the disease severity, but does not predict mortality. Further studies with repeated evaluations of LUS score are needed to further explore the role of LUS in the assessment of severity in SARS-CoV-2 disease and in the monitoring of the response to treatments.
Background Italy has been the first Western country to be heavily affected by the spread of SARS-COV-2 infection and among the pioneers of the clinical management of pandemic. To improve the outcome, identification of patients at the highest risk seems mandatory. Objectives Aim of this study is to identify comorbidities and clinical conditions upon admission associated with in-hospital mortality in several COVID Centers in Campania Region (Italy). Methods COVOCA is a multicentre retrospective observational cohort study, which involved 18 COVID Centers throughout Campania Region, Italy. Data were collected from patients who completed their hospitalization between March-June 2020. The endpoint was in-hospital mortality, assessed either from data at discharge or death certificate, whilst all exposure variables were collected at hospital admission. Results Among 618 COVID-19 hospitalized patients included in the study, 143 in-hospital mortality events were recorded, with a cumulative incidence of about 23%. At multivariable logistic analysis, male sex (OR 2.63, 95%CI 1.42–4.90; p = 0.001), Chronic Liver Disease (OR 5.88, 95%CI 2.39–14.46; p<0.001) and malignancies (OR 2.62, 95%CI 1.21–5.68; p = 0.015) disclosed an independent association with a poor prognosis, Glasgow Coma Scale (GCS) and Respiratory Severity Scale allowed to identify at higher mortality risk. Sensitivity analysis further enhanced these findings. Conclusion Mortality of patients hospitalized for COVID-19 appears strongly affected by both clinical conditions on admission and comorbidities. Originally, we observed a very poor outcome in subjects with a chronic liver disease, alongside with an increase of hepatic damage.
BackgroundDyspnea is one of the most frequent complaints in the Emergency Department. Thoracic ultrasound should help to differentiate cardiogenic from non-cardiogenic causes of dyspnea. We evaluated whether the diagnostic accuracy can be improved by adding a point-of-care-ultrasonography (POC-US) to routine exams and if an early use of this technique produces any advantage.MethodsOne hundred sixty-eight patients were enrolled and randomized in two groups: Group 1 received an immediate POC-US in addition to routine laboratory and instrumental tests; group 2 received an ultrasound scan within 1 h from the admission to the Emergency Department. The concordance between initial and final diagnosis and the percentage of wrong diagnosis in the two groups were evaluated. Mortality, days of hospitalization in Emergency Medicine department and transfers to other wards were compared. Sensitivity and specificity of the routine protocol and the one including ultrasonography for the diagnosis of the causes of dyspnea were also analyzed.ResultsEighty-eight patients were randomized in group 1 and 80 in group 2. The concordance rate between initial and final diagnoses was significantly different (0.94 in group 1 vs. 0.22 in group 2, p < 0.005). The percentage of wrong initial diagnosis was 5% in group 1 and 50% in group 2 (p < 0.0001).ConclusionsAdding POC-US to routine exams improves the diagnostic accuracy of dyspnea and reduces errors in the Emergency Department.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.