Thermal inertia has been applied to map soil water content exploiting remote sensing data in the short and long wave regions of the electromagnetic spectrum. Over the last years, optical and thermal cameras were sufficiently miniaturized to be loaded onboard of unmanned aerial systems (UASs), which provide unprecedented potentials to derive hyperspatial resolution thermal inertia for soil water content mapping. In this study, we apply a simplification of thermal inertia, the apparent thermal inertia (ATI), over pixels where underlying thermal inertia hypotheses are fulfilled (unshaded bare soil). Then, a kriging algorithm is used to spatialize the ATI to get a soil water content map. The proposed method was applied to an experimental area of the Alento River catchment, in southern Italy. Daytime radiometric optical multispectral and day and nighttime radiometric thermal images were acquired via a UAS, while in si t u soil water content was measured through the thermo-gravimetric and time domain reflectometry (TDR) methods. The determination coefficient between ATI and soil water content measured over unshaded bare soil was 0.67 for the gravimetric method and 0.73 for the TDR. After interpolation, the correlation slightly decreased due to the introduction of measurements on vegetated or shadowed positions (r 2 = 0.59 for gravimetric method; r 2 = 0.65 for TDR). The proposed method shows promising results to map the soil water content even over Manuscript
<p>Soil moisture (SM) is an essential element in the hydrological cycle influencing land-atmosphere interactions and rainfall-runoff processes. High-resolution mapping of SM at field scale is vital for understanding spatial and temporal behavior of water availability in agriculture. Unmanned Arial Systems (UAS) offer an extraordinary opportunity to bridge the existing gap between point-scale field observations and satellite remote sensing providing high spatial details at relatively low costs. Moreover, this data can help the construction of downscaling models to generate high-resolution SM maps. For instance, random Forest (RF) regression model can link the land surface features and SM to identify the importance level of each predictor.</p><p>The RF regression model has been tested using a combination of satellite imageries, UAS data and point measurements collected on the experimental area Monteforte Cilento site (MFC2) in the Alento river basin (Campania, Italy) which is an 8 hectares cropland area (covered by walnuts, cherry, and olive trees). This area has been selected given the number of long-term studies on the vadose zone that have been conducted across a range of spatial scales.</p><p>The coarse resolution data cover from Jan 2015 to Dec 2019 and include SENTINEL-1 CSAR 1km SM product, 1km Land surface temperature and NDVI products from MODIS and 30m thermal band (brightness temperature), red and green band data (atmospherically corrected surface reflectance) from LANDSAT-8, and SRTM DEM from NASA. High-resolution land-surface features data from UAS-mounted optical, thermal, multispectral, and hyperspectral sensors were used to generate high-resolution SM and related soil attributes.</p><p>It is to note that the available satellite-based soil moisture data has a coarse resolution of 1km while the UAS-based land surface features of the extremely high resolution of 16cm. We deployed a two-step downscaling approach to address the smooth effect of spatial averaging of soil moisture, which depends on different elements at small and large scale. Specifically, different combinations of predictors were adopted for different scales of gridded soil moisture data. For example, in the downscaling procedure from 1km resolution to 30m resolution, precipitation, land-surface temperature (LST), vegetation indices (VIs), and elevation were used while LST, VIs, slope, and topographic index were selected for the downscaling from 30m to 16cm resolution. Indeed, features controlling the spatial distributions of soil moisture at different scale reflect the characteristics of the physical process: i) the surface elevation and rainfall patterns control the first downscaling model; ii) the topographic convergence and local slope become more relevant to reach a more detailed resolution. In conclusion, the study highlighted that RF regression model is able to interpret fairly well the spatial patterns of soil moisture at the scale of 30m starting from a resolution of 1km, while it is highlighted that the second downscaling step (up to few centimeters) is much more complex and requires further studies.</p><p>This research is a part of EU COST-Action &#8220;HARMONIOUS: Harmonization of UAS techniques for agricultural and natural ecosystems monitoring&#8221;.</p><p><strong>Keywords:</strong> soil moisture, downscaling, Unmanned Aerial Systems, random forest, HARMONIOUS</p>
<p>Soil moisture (SM) is an essential element in the hydrological cycle influencing land-atmosphere interactions and rainfall-runoff processes. Quantification of the spatial and temporal behaviour of SM at field scale is vital for understanding water availability in agriculture, ecosystems research, river basin hydrology and water resources management. Uncrewed Arial Systems (UAS) offer an extraordinary opportunity to bridge the existing gap between point-scale field observations and satellite remote sensing providing high spatial details at relatively low costs. Moreover, UAS data can help the construction of downscaling models which can link the land surface features and SM to identify the importance level of each predictor. To optimize the usage of data from UAS surveys for generating high-resolution SM at field scale, a comparative study of various SM retrieval or downscaling methods can be beneficial.</p><p>In this study, four methods, which include the apparent thermal inertia method, Kubelka&#8211;Munk method (KM), simplified temperature-vegetation triangle method, and random forest model (RF), were compared by theory background, data requirements, operation procedures and SM estimation results. The above-mentioned models have been tested using UAS data and point measurements collected on the Monteforte Cilento site (MFC2) in the Alento river basin (Campania, Italy) which is an 8 hectares cropland area (covered by walnuts, cherry, and olive trees). A number of long-term studies on the vadose zone have been conducted across a range of spatial scales. The thermal inertia model is built upon the dependence of the thermal diffusion on SM, which were inferred from diachronic thermal infrared data. The Kubelka&#8211;Munk Model is a spectral model to retrieve surface SM using optical data. The simplified temperature&#8211;vegetation triangle model, was used to map surface SM based on simultaneous information of the vegetation coverage and surface temperature. In addition, we also introduce an SM downscaling method using the RF model and SENTINEL-1 CSAR 1km SM product.</p><p>The study is concluded with the inter-comparison of methods. The results from KM have the highest resolution which is the same as the input multispectral data. The results of RF and KM provides information only for bare soil pixels according to the principle of the model. Results show good performances for all methods, but the simplified triangle and thermal inertia model provides better performances in terms of correlation coefficient and RMSE measured with respect to in-situ measurements. In addition, it is worthy to say that the RF downscaling method reveals the features controlling the spatial distributions of SM at a different scale.</p><p>This research is a part of EU COST-Action &#8220;HARMONIOUS&#8221; and waterJPI project &#8220;iAqueduct&#8221;.</p>
<p>Quantification of the spatial and temporal behavior of soil moisture is vital for understanding water availability in agriculture, ecosystems research, river basin hydrology and water resources management. Unmanned Aerial Systems (UAS) offer a great potential in monitoring this parameter at sub-meter level and at relatively low cost. The standardization of operational procedures for soil moisture monitoring with UAS can be beneficial to understanding and quantify the quality of retrieved soil moisture (e.g., from different platforms and sensors).</p><p>In this study, soil moisture retrieved from UAS using different retrieval algorithms was compared to collocated ground measurements. The thermal inertia model builds upon the dependence of the thermal diffusion on soil moisture. The soil thermal inertia is quantified by processing visible and near-infrared (VIS-NIR) and thermal infrared (TIR) images, acquired at two different times of a day. The temperature&#8211;vegetation trapezoidal model is also used to map soil moisture over vegetated pixels. This trapezoidal model depicts the soil moisture dependence of the surface energy balance. The comparison of the two algorithms helps define a preliminary standard procedure for retrieving soil moisture with UAS.</p><p>As a case study, a typical cropland area with olive orchard, cherry and walnut trees in the region of Monteforte Cilento (Italy, Salerno) is used, where optical and thermal images and in situ data were simultaneously acquired. In the Alento observatory, long-term studies on vadose zone hydrology have been conducting across a range of spatial scales. Our findings provide an important contribution towards improving our knowledge on evaluating the ability of UAS to map soil moisture, in support of sustainable natural resources management and climate change studies.</p><p>This research is a part of EU COST-Action &#8220;HARMONIOUS: Harmonization of UAS techniques for agricultural and natural ecosystems monitoring&#8221;.</p><p><strong>Keywords:</strong> soil moisture, Unmanned Aerial Systems, thermal inertia, HARMONIOUS</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.