Objective: To assess the structural and functional characteristics of pulmonary arteries by intravascular ultrasound (IVUS) in the setting of primary pulmonary hypertension, and to correlate the ultrasound findings with haemodynamic variables and mortality at follow up. Design: Prospective observational study. Setting: University hospital (tertiary referral centre). Patients: 20 consecutive patients with primary pulmonary hypertension (16 female; mean (SD) age, 39 (14) years). Methods: Cardiac catheterisation and simultaneous IVUS of pulmonary artery branches at baseline and after infusion of epoprostenol. Results: 33 pulmonary arteries with a mean diameter of 3.91 (0.80) mm were imaged, and wall thickening was observed in all cases, 64% being eccentric. Mean wall thickness was 0.37 (0.13) mm, percentage wall area 31.0 (9.3)%, pulsatility 14.6 (4.8)%, and pulmonary/elastic strain index 449 (174) mm Hg. No correlation was observed between IVUS findings and haemodynamic variables. Epoprostenol infusion increased pulsatility by 53% and decreased the pulmonary/elastic strain index by 41% (p = 0.0001), irrespective of haemodynamic changes. At 18 (12) months follow up, nine patients had died. A reduced pulsatility and an increased pulmonary/elastic strain index were associated with increased mortality at follow up ( Conclusions: IVUS demonstrated pulmonary artery wall abnormalities in all patients with primary pulmonary hypertension, mostly eccentric. The severity of the changes did not correlate with haemodynamic variables, and epoprostenol improved pulmonary vessel stiffness. There was an association between impaired pulmonary artery functional state as determined by IVUS and mortality at follow up. P rimary pulmonary hypertension is a life threatening disease characterised by a progressive increase in pulmonary blood pressure that often leads to right ventricular failure and death.1 Median survival is 2.8 years from the time of diagnosis, and mortality reaches 65% at three years of follow up.2 Calcium channel blockers, warfarin, and prostacyclin have improved the prognosis, but the three year mortality has remained as high as 50%. The diagnosis of primary pulmonary hypertension is based on clinical and haemodynamic data, and prognosis is determined by the alterations in haemodynamic variables (mean pulmonary artery pressure, cardiac output, mean right atrial pressure).The assessment of pulmonary artery morphology in primary pulmonary hypertension has been limited to pulmonary angiography and to the histological study of lung samples obtained at biopsy. Pulmonary angiography, which is not free of complications in these cases, only shows the vessel lumen and provides no information about vessel wall abnormalities. Histological evaluation of lung biopsies provides a valuable quantitative and qualitative description of the pulmonary wall changes, but remains a static in vitro examination without functional assessment and requires a thoracotomy. Intravascular ultrasound (IVUS) has been validated as a reliable method for...
BackgroundExercise capacity is impaired in pulmonary arterial hypertension (PAH). We hypothesized that cardiovascular reserve abnormalities would be associated with impaired hemodynamic response to pharmacological stress and worse outcome in PAH.MethodsEighteen PAH patients (p) group 1 NYHA class II/III and ten controls underwent simultaneous right cardiac catheterization and intravascular ultrasound at rest and during low dose-dobutamine (10 mcg/kg/min) with trendelenburg (DST). We estimated cardiac output (CO), pulmonary vascular resistance (PVR) and capacitance (PC), and PA elastic modulus (EM). We concomitantly measured tricuspid annular plane systolic excursion (TAPSE), RV myocardial peak systolic velocity (Sm) and isovolumic myocardial acceleration (IVA) in PAH patients. Based on the rounded mean + 2 SD of the increase in mPAP in our healthy control group during DST (2.8 + 1.8 mm Hg), PAH p were divided into two groups according to mean PA pressure (mPAP) response during DST, 1: ΔmPAP > 5 mm Hg and 2: ΔmPAP ≤ 5 mm Hg. Cardiovascular reserve was estimated as the change (delta, Δ) during DST compared with rest, including ΔmPAP with respect to ΔCO (ΔmPAP/ΔCO). All patients were prospectively followed up for 2 years.ResultsPAH p showed significant lower heart rate and CO increase than controls during DST, with a significant mPAP and pulse PAP increase and higher ΔmPAP/ΔCO (p < 0.05). Neither hemodynamic, IVUS and echocardiographic data were different between both PAH groups at rest. In group 1, DST caused a higher ΔEM, ΔmPAP/ΔCO, ΔPVR, and ΔTAPSE than group 2, with a lower IVA increase and a negative ΔSV (p < 0.05). TAPSE correlated with mPAP and RVP (p < 0.05) and, IVA and Sm correlated with CO (p < 0.05). ΔEM correlated with ΔmPAP and ΔIVA with ΔCO (p < 0.05). There were two deaths/pulmonary transplantations in group 1 and one death in group 2 during the follow-up (p > 0.05).ConclusionsPulmonary vascular reserve and RV systolic reserve are significantly impaired in patients with PAH. The lower recruitable cardiovascular reserve is significantly related to a worse hemodynamic response to DST and it could be associated with a poor clinical outcome.
BackgroundPulmonary hypertension (PH) associated with lung disease has the worst prognosis of all types of PH. Pulmonary arterial vasculopathy is an early event in the natural history of chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD). The present study characterized the alterations in the structure and function of the pulmonary arterial (PA) wall of COPD and ILD candidates for lung transplantation (LTx).MethodsA cohort of 73 patients, 63 pre-LTx (30 COPD, 33 ILD), and ten controls underwent simultaneous right heart catheterisation and intravascular ultrasound (IVUS). Total pulmonary resistance (TPR), capacitance (Cp), and the TPR-Cp relationship were assessed. PA stiffness and the relative area of wall thickness were estimated as pulse PA pressure/IVUS pulsatility and as [(external sectional area-intimal area)/external sectional area] × 100, respectively.ResultsTwenty-seven percent of patients had pulmonary arterial wedge pressure > 15 mmHg and were not analyzed. PA stiffness and the area of wall thickness were increased in comparison with controls, even in patients without PH (p < 0.05). ILD patients showed a significant higher PA stiffness, and lower Cp beyond mean PA pressure (mPAP) and lower area of wall thickness than COPD patients (p < 0.05). TPR-Cp relationship was shifted downward left for ILD patients.ConclusionsSignificant increase of PA stiffness and area of wall thickness were present even in patients without PH and can make the diagnosis of pulmonary vasculopathy at a preclinical stage in PH-lung disease candidates for LTx. ILD patients showed the worst PA stiffness and Cp with respect to COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.