Inland and coastal waterbodies are critical components of the global biosphere. Timely monitoring is necessary to enhance our understanding of their functions, the drivers impacting on these functions and to deliver more effective management. The ability to observe waterbodies from space has led to Earth observation (EO) becoming established as an important source of information on water quality and ecosystem condition. However, progress toward a globally valid EO approach is still largely hampered by inconsistences over temporally and spatially variable in-water optical conditions. In this study, a comprehensive dataset from more than 250 aquatic systems, representing a wide range of conditions, was analyzed in order to develop a typology of optical water types (OWTs) for inland and coastal waters. We introduce a novel approach for clustering in situ hyperspectral water reflectance measurements (n 5 4045) from multiple sources based on a functional data analysis. The resulting classification algorithm identified 13 spectrally distinct clusters of measurements in inland waters, and a further nine clusters from the marine environment. The distinction and characterization of OWTs was supported by the availability of a wide range of coincident data on biogeochemical and inherent optical properties from inland waters. Phylogenetic trees based on the shapes of cluster means were constructed to identify similarities among the derived clusters with respect to spectral diversity. This typification provides a valuable framework for a globally applicable EO scheme and the design of future EO missions.
The atmospheric contribution constitutes about 90 percent of the signal measured by satellite sensors over oceanic and inland waters. Over open ocean waters, the atmospheric contribution is relatively easy to correct as it can be assumed that water-leaving radiance in the near-infrared (NIR) is equal to zero and it can be performed by applying a relatively simple dark-pixel-correction-based type of algorithm. Over inland and coastal waters, this assumption cannot be made since the water-leaving radiance in the NIR is greater than zero due to the presence of water components like sediments and dissolved organic particles. The aim of this study is to determine the most appropriate atmospheric correction processor to be applied on Sentinel-2 MultiSpectral Imagery over several types of inland waters. Retrievals obtained from different atmospheric correction processors (i.e., Atmospheric correction for OLI 'lite' (ACOLITE), Case 2 Regional Coast Colour (here called C2RCC), Case 2 Regional Coast Colour for Complex waters (here called C2RCCCX), Image correction for atmospheric effects (iCOR), Polynomial-based algorithm applied to MERIS (Polymer) and Sen2Cor or Sentinel 2 Correction) are compared against in situ reflectance measured in lakes and reservoirs in the Valencia region (Spain). Polymer and C2RCC are the processors that give back the best statistics, with coefficients of determination higher than 0.83 and mean average errors less than 0.01. An evaluation of the performance based on water types and single bands-classification based on ranges of in situ chlorophyll-a concentration and Secchi disk depth values-showed that performance of these set of processors is better for relatively complex waters. ACOLITE, iCOR and Sen2Cor had a better performance when applied to meso-and hyper-eutrophic waters, compare with oligotrophic. However, other considerations should also be taken into account, like the elevation of the lakes above sea level, their distance from the sea and their morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.