The hydrolytic stability of [Zr6(OH)4O4{O(O)CC(CH3)=CH2}12] (Zr6), and [Zr6O4(OH)4{O(O)CCH2CH=CH2}12]2·6[CH2=CHCH2C(O)OH] (Zr12) oxoclusters in different environments was thoroughly investigated by FTIR, Raman, and X-ray photoelectron spectroscopy (XPS). Specific information about the local structures around the Zr centers during the stability tests was achieved by in situ extended X-ray absorption fine structure (EXAFS) measurements, and the exact compositions were determined by inductively coupled plasma MS (ICP-MS) and elemental analysis. By this multidimensional spectroscopic approach, an overview on the structures formed after different treatments could be gained. The stability of the oxoclusters was then investigated in the presence of hydrogen peroxide, and the formation of peroxo–metal complexes was detected. Thus, a kinetic study was performed in acetonitrile to evaluate the performances of the oxoclusters as oxygen transfer catalysts. The oxidation of methyl p-tolyl sulfide to the corresponding sulfoxide and sulfone was chosen as a model reaction; in some cases, an interesting selectivity towards the formation of the sulfone was found over more than 4700 catalytic cycles
At variance with previously known coordination compounds, the polyoxometalate (POM)-embedded Zr(IV) and Hf(IV) peroxides with formula: [M(2)(O(2))(2)(α-XW(11)O(39))(2)](12-) (M=Zr(IV), X=Si (1), Ge (2); M=Hf(IV), X=Si (3)) and [M(6)(O(2))(6)(OH)(6)(γ-SiW(10)O(36))(3)](18-) (M=Zr(IV) (4) or Hf(IV) (5)) are capable of oxygen transfer to suitable acceptors including sulfides and sulfoxides in water. Combined (1)H NMR and electrochemical studies allow monitoring of the reaction under both stoichiometric and catalytic conditions. The reactivity of peroxo-POMs 1-5 is compared on the basis of substrate conversion and kinetic. The results show that the reactivity of POMs 1-3 outperforms that of the trimeric derivatives 4 and 5 by two orders of magnitude. Reversible peroxidation of 1-3 occurs by H(2)O(2) addition to the spent catalysts, restoring oxidation rates and performance of the pristine system. The stability of 1-3 under catalytic regime has been confirmed by FT-IR, UV/Vis, and resonance Raman spectroscopy. The reaction scope has been extended to alcohols, leading to the corresponding carbonyl compounds with yields up to 99% under microwave (MW) irradiation. DFT calculations revealed that polyanions 1-3 have high-energy peroxo HOMOs, and a remarkable electron density localized on the peroxo sites as indicated by the calculated map of the electrostatic potential (MEP). This evidence suggests that the overall description of the oxygen-transfer mechanism should include possible protonation equilibria in water, favored for peroxo-POMs 1-3.
Multicompartment, spherical microcontainers were engineered through a layer-by-layer polyelectrolyte deposition around a fluorescent core while integrating a ruthenium polyoxometalate (Ru4POM), as molecular motor, vis-à-vis its oxygenic, propeller effect, fuelled upon H2O2 decomposition. The resulting chemomechanical system, with average speeds of up to 25 μm s(-1), is amenable for integration into a microfluidic set-up for mixing and displacement of liquids, whereby the propulsion force and the resulting velocity regime can be modulated upon H2O2-controlled addition.
The Al(III)-containing polyanions [Al(III)4(H2O)10(β-XW9O33H)2](4-) with X = As(III) (1) and Sb(III) (2) feature four aluminum(III) centers sandwiched by two trivacant (β-XW9O33) Keggin units, and trigger peroxide catalysis as well as substrate coordination via multiple Lewis acid site interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.