Social-media platforms have created new ways for citizens to stay informed and participate in public debates. However, to enable a healthy environment for information sharing, social deliberation, and opinion formation, citizens need to be exposed to sufficiently diverse viewpoints that challenge their assumptions, instead of being trapped inside filter bubbles. In this paper, we take a step in this direction and propose a novel approach to maximize the diversity of exposure in a social network. We formulate the problem in the context of information propagation, as a task of recommending a small number of news articles to selected users. We propose a realistic setting where we take into account content and user leanings, and the probability of further sharing an article. This setting allows us to capture the balance between maximizing the spread of information and ensuring the exposure of users to diverse viewpoints.The resulting problem can be cast as maximizing a monotone and submodular function subject to a matroid constraint on the allocation of articles to users. It is a challenging generalization of the influence maximization problem. Yet, we are able to devise scalable approximation algorithms by introducing a novel extension to the notion of random reverse-reachable sets. We experimentally demonstrate the efficiency and scalability of our algorithm on several real-world datasets.
Social media have a great potential to improve information dissemination in our society, yet they have been held accountable for a number of undesirable effects, such as polarization and filter bubbles. It is thus important to understand these negative phenomena and develop methods to combat them. In this paper, we propose a novel approach to address the problem of breaking filter bubbles in social media. We do so by aiming to maximize the diversity of the information exposed to connected social-media users. We formulate the problem of maximizing the diversity of exposure as a quadratic-knapsack problem. We show that the proposed diversity-maximization problem is inapproximable, and thus, we resort to polynomial nonapproximable algorithms, inspired by solutions developed for the quadratic-knapsack problem, as well as scalable greedy heuristics. We complement our algorithms with instance-specific upper bounds, which are used to provide empirical approximation guarantees for the given problem instances. Our experimental evaluation shows that a proposed greedy algorithm followed by randomized local search is the algorithm of choice given its quality-vs.-efficiency trade-off.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.