Summary SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE2 1 , and is a major antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising antibodies in an immune suppressed individual treated with convalescent plasma, generating whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was observed in the overall viral population structure following two courses of remdesivir over the first 57 days. However, following convalescent plasma therapy we observed large, dynamic virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and ΔH69/ΔV70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype diminished in frequency, before returning during a final, unsuccessful course of convalescent plasma. In vitro , the Spike escape double mutant bearing ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be the main contributor to decreased susceptibility but incurred an infectivity defect. The ΔH69/ΔV70 single mutant had two-fold higher infectivity compared to wild type, possibly compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy associated with emergence of viral variants with evidence of reduced susceptibility to neutralising antibodies.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Norwalk-like viruses (NLV) are important economically as a cause of both sporadic gastroenteritis in the community and large outbreaks in hospitals and other institutional settings. Despite the description of several antigenic types relatively little is known about the epidemiology of these individual types. NLVs were detected by electron microscopy in faecal specimens from 706 outbreaks of gastroenteritis that represented 68% of all outbreaks of non-bacterial gastroenteritis. These outbreaks took place in the counties of West and North Yorkshire and Humberside during six winter seasons between July 1992 and June 1998. NLV strains from 671 outbreaks were typed by antigen capture enzyme linked immunosorbent assays (ELISA) based on antisera made to recombinant virus-like particles of three antigenically distinct NLVs; Norwalk (NV), Mexico (MXV) and Grimsby (GRV) viruses. GRV was the predominant strain for five of the six winter seasons and overall was associated with 61% of NLV outbreaks. MXV was responsible for a single epidemic peak in the winter of 1993/94 but was also observed at other times throughout the study period. NV was only associated with two outbreaks in 1994 that were epidemiologically linked. Strains from the remaining 32% of outbreaks were non-reactive in all three ELISA. Thus, a single NLV antigenic type seems to have predominated during the period 1992 to 1998 in the UK.
Objectives: Non-viral methods of gene transfer have been preferred in gene therapy approaches for several reasons, particularly for their safety, simplicity and convenience in introducing heterologous DNA into cells. Polyomavirus virus-like particles (VLPs) represent a promising carrier for encapsidation of foreign nucleic acids for gene therapy. For the development of such gene delivery systems as well as for providing reagents for improving virus diagnostics, an efficient yeast expression system for the generation of different polyomavirus VLPs was established. Methods: A galactose-inducible Saccharomyces cerevisiae yeast expression system was used. Formation of empty VLPs was confirmed by cesium chloride ultracentrifugation, agarose gel electrophoresis and electron microscopy. Cross-reactivity of the major capsid proteins (VP1) of different polyomaviruses was analyzed by Western blot using rabbit and mice sera raised against the VP1 proteins. Results: VP1 of polyomaviruses from humans (JC polyomavirus and serotypes AS and SB of BK polyomavirus), rhesus monkeys (simian virus 40), hamsters (hamster polyomavirus), mice (murine polyomavirus) and birds (budgerigar fledgling disease virus) were expressed at high levels in yeast. Empty VLPs formed by all yeast-expressed VP1 proteins were dissociated into pentamers and reassociated into VLPs by defined ion and pH conditions. Different patterns of cross-reactivity of the VP1 proteins with heterologous mice and rabbit sera were observed. Conclusion: The developed heterologous yeast expression system is suitable for high-level production of polyomavirus VLPs. Yeast-derived VLPs are generally free of toxins, host cell DNA and proteins. These VLPs might be useful for the generation of new diagnostical tools, gene delivery systems and antiviral vaccines.
The application of molecular technologies, such as the expression of viral proteins in baculovirus, has provided a powerful approach to the diagnosis of human calicivirus (HuCV) infections. The baculovirus-expressed HuCV capsid protein self-assembles into virus-like particles, providing excellent reagents for immunologic assays, such as enzyme immunoassays (EIAs). Following the expression of the capsid protein of Norwalk virus, the capsid proteins of 8 other HuCV strains have been expressed in baculovirus. The unlimited supply of baculovirus-produced reagents for HuCVs allows these EIAs to be applied in large-scale clinical and epidemiological studies. Both the antigen and antibody-detection EIAs are highly sensitive. The antigen-detection EIAs are highly specific, but the antibody-detection EIAs are more broadly reactive. This article reviews baculovirus expression techniques used to produce HuCV capsid antigens, development of EIAs using these antigens, and application of these EIAs in studies of HuCV infection and illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.