Renewable energy microgeneration is rising leading to creation of prosumer communities making it possible to extract value from surplus energy and usage flexibility. Such a peer-to-peer energy trading community requires a decentralized, immutable and access-controlled transaction system for tokenized energy assets. In this study we present a unified blockchain-based system for energy asset transactions among prosumers, electric vehicles, power companies and storage providers. Two versions of the system were implemented on Hyperledger Fabric. Assets encapsulating an identifier or unique information along with value are modelled as non-fungible tokens (NFT), while those representing value only are modelled as fungible tokens (FT). We developed the associated algorithms for token lifecycle management, analyzed their complexities and encoded them in smart contracts for performance testing. The results show that performance of both implementations are comparable for most major operations. Further, we presented a detailed comparison of FT and NFT implementations based on use-case, design, performance, advantages and disadvantages. Our implementation achieved a throughput of 448.3 transactions per second for the slowest operation (transfer) with a reasonably low infrastructure.
A framework for maintaining security & preserving privacy for analysis of sensor data from smart homes, without compromising on data utility is presented. Storing the personally identifiable data as hashed values withholds identifiable information from any computing nodes. However the very nature of smart home data analytics is establishing preventive care. Data processing results should be identifiable to certain users responsible for direct care. Through a separate encrypted identifier dictionary with hashed and actual values of all unique sets of identifiers, we suggest re-identification of any data processing results. However the level of re-identification needs to be controlled, depending on the type of user accessing the results. Generalization and suppression on identifiers from the identifier dictionary before re-introduction could achieve different levels of privacy preservation. In this paper we propose an approach to achieve data security & privacy through out the complete data lifecycle: data generation/collection, transfer, storage, processing and sharing.
Short-term load forecasting ensures the efficient operation of power systems besides affording continuous power supply for energy consumers. Smart meters that are capable of providing detailed information on buildings energy consumption, open several doors of opportunity to short-term load forecasting at the individual building level. In the current paper, four machine learning methods have been employed to forecast the daily peak and hourly energy consumption of domestic buildings. The utilized models depend merely on buildings historical energy consumption and are evaluated on the profiles that were not previously trained on. It is evident that developing data-driven models lacking external information such as weather and building data are of great importance under the situations that the access to such information is limited or the computational procedures are costly. Moreover, the performance evaluation of the models on separated house profiles determines their generalization ability for unseen consumption profiles. The conducted experiments on the smart meter data of several UK houses demonstrated that if the models are fed with sufficient historical data, they can be generalized to a satisfactory level and produce quite accurate results even if they only use past consumption values as the predictor variables. Furthermore, among the four applied models, the ones based on deep learning and ensemble techniques, display better performance in predicting daily peak load consumption than those of others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.