WBC appears to be effective in improving functional status and the feeling of fatigue in patients with MS and especially in those who are the most fatigued.
A framework for maintaining security & preserving privacy for analysis of sensor data from smart homes, without compromising on data utility is presented. Storing the personally identifiable data as hashed values withholds identifiable information from any computing nodes. However the very nature of smart home data analytics is establishing preventive care. Data processing results should be identifiable to certain users responsible for direct care. Through a separate encrypted identifier dictionary with hashed and actual values of all unique sets of identifiers, we suggest re-identification of any data processing results. However the level of re-identification needs to be controlled, depending on the type of user accessing the results. Generalization and suppression on identifiers from the identifier dictionary before re-introduction could achieve different levels of privacy preservation. In this paper we propose an approach to achieve data security & privacy through out the complete data lifecycle: data generation/collection, transfer, storage, processing and sharing.
Preterm births affect around 15 million children a year worldwide. Current medical efforts focus on mitigating the effects of prematurity, not on preventing it. Diagnostic methods are based on parent traits and transvaginal ultrasound, during which the length of the cervix is examined. Approximately 30% of preterm births are not correctly predicted due to the complexity of this process and its subjective assessment. Based on recent research, there is hope that machine learning can be a helpful tool to support the diagnosis of preterm births. The objective of this study is to present various machine learning algorithms applied to preterm birth prediction. The wide spectrum of analysed data sets is the advantage of this survey. They range from electrohysterogram signals through electronic health records to transvaginal ultrasounds. Reviews of works on preterm birth already exist; however, this is the first review that includes works that are based on a transvaginal ultrasound examination. In this work, we present a critical appraisal of popular methods that have employed machine learning methods for preterm birth prediction. Moreover, we summarise the most common challenges incurred and discuss their possible application in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.