BackgroundRadiolabeled RGD peptides detect αvβ3 integrin expression associated with angiogenesis and extracellular matrix remodeling after myocardial infarction. We studied whether cardiac positron emission tomography (PET) with [68Ga]NODAGA-RGD detects increased αvβ3 integrin expression after induction of flow-limiting coronary stenosis in pigs, and whether αvβ3 integrin is expressed in viable ischemic or injured myocardium.MethodsWe studied 8 Finnish landrace pigs 13 ± 4 days after percutaneous implantation of a bottleneck stent in the proximal left anterior descending coronary artery. Antithrombotic therapy was used to prevent stent occlusion. Myocardial uptake of [68Ga]NODAGA-RGD (290 ± 31 MBq) was evaluated by a 62 min dynamic PET scan. The ischemic area was defined as the regional perfusion abnormality during adenosine-induced stress by [15O]water PET. Guided by triphenyltetrazolium chloride staining, tissue samples from viable and injured myocardial areas were obtained for autoradiography and histology.ResultsStent implantation resulted in a partly reversible myocardial perfusion abnormality. Compared with remote myocardium, [68Ga]NODAGA-RGD PET showed increased tracer uptake in the ischemic area (ischemic-to-remote ratio 1.3 ± 0.20, p = 0.0034). Tissue samples from the injured areas, but not from the viable ischemic areas, showed higher [68Ga]NODAGA-RGD uptake than the remote non-ischemic myocardium. Uptake of [68Ga]NODAGA-RGD correlated with immunohistochemical detection of αvβ3 integrin that was expressed in the injured myocardial areas.ConclusionsCardiac [68Ga]NODAGA-RGD PET demonstrates increased myocardial αvβ3 integrin expression after induction of flow-limiting coronary stenosis in pigs. Localization of [68Ga]NODAGA-RGD uptake indicates that it reflects αvβ3 integrin expression associated with repair of recent myocardial injury.
Both AdVEGF-B and AdVEGF-D gene transfers induced efficient angiogenesis in the myocardium resulting in an increased myocardial perfusion measured by PET. Importantly, local perfusion increase did not induce any coronary steal effect. As such, both treatments seem suitable new candidates for the induction of therapeutic angiogenesis for the treatment of refractory angina.
A large animal model of chronic myocardial ischemia and heart failure is crucial for the development of novel therapeutic approaches. In this study we developed a novel percutaneous one- and two-vessel model for chronic myocardial ischemia using a stent coated with a polytetrafluoroethylene tube formed in a bottleneck shape. The bottleneck stent was implanted in the proximal left anterior descending (LAD) or proximal circumflex artery (LCX), or in both proximal LCX and mid LAD 1 wk later (2-vessel model), and pigs were followed for 4-5 wk. Ejection fraction (EF), infarct size, collateral growth, and myocardial perfusion were assessed. Pigs were given antiarrhythmic medication to prevent sudden death. The occlusion time of the bottleneck stent and the timing of myocardial infarction could be modulated by the duration of antiplatelet medication. Fractional flow reserve measurements and positron emission tomography imaging showed severe ischemia after bottleneck stenting covering over 50% of the left ventricle in the proximal LAD model. Complete coronary occlusion was necessary for significant collateral growth, which mostly had occurred already during the first wk after the stent occlusion. Dynamic and competitive collateral growth patterns were observed. EF declined from 64 to 41% in the LCX model and to 44% in the LAD model 4 wk after stenting with 12 and 21% infarcted left ventricle in the LCX and LAD models, respectively. The mortality was 32 and 37% in the LCX and LAD models but very (71%) high in the two-vessel disease model. The implantation of a novel bottleneck stent in the proximal LAD or LCX is a novel porcine model of reversible myocardial ischemia (open stent) and ischemic heart failure (occluded stent) and is feasible for the development of new therapeutic approaches.
Background. Assessment of myocardial viability is often needed in patients with chest pain and reduced ejection fraction. We evaluated the performance of reduced resting MBF, perfusable tissue fraction (PTF), and perfusable tissue index (PTI) in the assessment of myocardial viability in a pig model of myocardial infarction (MI).Methods and results. Pigs underwent resting [ 15 O]water PET perfusion study 12 weeks after surgical (n = 16) or 2 weeks after catheter-based (n = 4) occlusion of the proximal left anterior descending coronary artery. MBF, PTF, and PTI were compared with volume fraction of MI in matched segments as assessed by triphenyl tetrazolium chloride staining of LV slices. MBF and PTF were lower in infarcted than non-infarcted segments. Segmental analysis of MBF showed similar area under the curve (AUC) of 0.85, 0.86, and 0.90 with relative MBF, Electronic supplementary material The online version of this article (https://doi.PTF, and PTI for the detection of viable myocardium defined as infarct volume fraction of < 75%. Cut-off values of relative MBF of ‡ 67% and PTF of ‡ 66% resulted in accuracies of 90% and 81%, respectively. Conclusions. Our results indicate that resting MBF, PTF, and PTI based on [ 15 O]water PET perfusion imaging are useful for the assessment of myocardial viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.