The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
A large animal model of chronic myocardial ischemia and heart failure is crucial for the development of novel therapeutic approaches. In this study we developed a novel percutaneous one- and two-vessel model for chronic myocardial ischemia using a stent coated with a polytetrafluoroethylene tube formed in a bottleneck shape. The bottleneck stent was implanted in the proximal left anterior descending (LAD) or proximal circumflex artery (LCX), or in both proximal LCX and mid LAD 1 wk later (2-vessel model), and pigs were followed for 4-5 wk. Ejection fraction (EF), infarct size, collateral growth, and myocardial perfusion were assessed. Pigs were given antiarrhythmic medication to prevent sudden death. The occlusion time of the bottleneck stent and the timing of myocardial infarction could be modulated by the duration of antiplatelet medication. Fractional flow reserve measurements and positron emission tomography imaging showed severe ischemia after bottleneck stenting covering over 50% of the left ventricle in the proximal LAD model. Complete coronary occlusion was necessary for significant collateral growth, which mostly had occurred already during the first wk after the stent occlusion. Dynamic and competitive collateral growth patterns were observed. EF declined from 64 to 41% in the LCX model and to 44% in the LAD model 4 wk after stenting with 12 and 21% infarcted left ventricle in the LCX and LAD models, respectively. The mortality was 32 and 37% in the LCX and LAD models but very (71%) high in the two-vessel disease model. The implantation of a novel bottleneck stent in the proximal LAD or LCX is a novel porcine model of reversible myocardial ischemia (open stent) and ischemic heart failure (occluded stent) and is feasible for the development of new therapeutic approaches.
Both AdVEGF-B and AdVEGF-D gene transfers induced efficient angiogenesis in the myocardium resulting in an increased myocardial perfusion measured by PET. Importantly, local perfusion increase did not induce any coronary steal effect. As such, both treatments seem suitable new candidates for the induction of therapeutic angiogenesis for the treatment of refractory angina.
Gene therapy has been expected to become a novel treatment method since the structure of DNA was discovered in 1953. The morbidity from cardiovascular diseases remains remarkable despite the improvement of percutaneous interventions and pharmacological treatment, underlining the need for novel therapeutics. Gene therapy-mediated therapeutic angiogenesis could help those who have not gained sufficient symptom relief with traditional treatment methods. Especially patients with severe coronary artery disease and heart failure could benefit from gene therapy. Some clinical trials have reported improved myocardial perfusion and symptom relief in CAD patients, but few trials have come up with disappointing negative results. Translating preclinical success into clinical applications has encountered difficulties in successful transduction, study design, endpoint selection, and patient selection and recruitment. However, promising new methods for transducing the cells, such as retrograde delivery and cardiac-specific AAV vectors, hold great promise for myocardial gene therapy. This review introduces gene therapy for ischaemic heart disease and heart failure and discusses the current status and future developments in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.