The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and / or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology.
To understand the effects of substitution patterns on photosensitizing the ability of boron dipyrromethene (BODIPY), two structural variations that either investigate the effectiveness of various iodinated derivatives to maximize the "heavy atom effect" or focus on the effect of extended conjugation at the 4-pyrrolic position to red-shift their activation wavelengths were investigated. Compounds with conjugation at the 4-pyrrolic position were less photocytotoxic than the parent unconjugated compound, while those with an iodinated BODIPY core presented better photocytotoxicity than compounds with iodoaryl groups at the meso-positions. The potency of the derivatives generally correlated well with their singlet oxygen generation level. Further studies of compound 5 on HSC-2 cells showed almost exclusive localization to mitochondria, induction of G(2)/M-phase cell cycle block, and onset of apoptosis. Compound 5 also extensively occluded the vasculature of the chick chorioallantoic membrane. Iodinated BODIPY structures such as compound 5 may have potential as new photodynamic therapy agents for cancer.
The antimetastatic ruthenium(II) compounds [Ru(η(6)-p-cymene)Cl(2)(PTA)] (PTA = 1,3,5-triaza-7-phosphaadamantane) (RAPTA-C) and [Ru(η(6)-toluene)Cl(2)(PTA)] (RAPTA-T), as well as their analogues [Ru(η(6)-p-cymene)Cl(2)(DAPTA)] (DAPTA = (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane)) (DAPTA-C) and [Ru(η(6)-toluene)Cl(2)(DAPTA)] (DAPTA-T), respectively, were tested in in vitro bioassays for endothelial cell function. All compounds showed low toxicity profiles and similar dose-dependent antiproliferative effects in endothelial cells at ≥100 μg/mL (∼200 μM). EC migration, measured 6 h after drug exposure, was also efficiently inhibited (ED(50) of ∼300 μg/mL, ∼500 μM, for all compounds). Since no cytostatic effect was noted, the inhibition of proliferation was considered mainly to consist of antiangiogenic activity. RAPTA-T and DAPTA-C were also tested in vivo in the chicken chorioallantoic membrane (CAM) assay and found to inhibit CAM development. Importantly, effective prevention of revascularization of the CAM after vaso-occlusive photodynamic therapy was observed. The reported ruthenium complexes show promising antimetastatic activity involving inhibition of angiogenesis and therefore are attractive agents for development of anticancer therapies based on combination of chemo- and angiostatic treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.