Transcription factor GATA4 is expressed in Sertoli and Leydig cells and is required for proper development of the murine fetal testis. The role of GATA4 in adult testicular function, however, has remained unclear due to prenatal lethality of mice harboring homozygous mutations in Gata4. To characterize the function of GATA4 in the adult testis, we generated mice in which Gata4 was conditionally deleted in Sertoli cells using Cre-LoxP recombination with Amhr2-Cre. Conditional knockout (cKO) mice developed age-dependent testicular atrophy and loss of fertility, which coincided with decreases in the quantity and motility of sperm. Histological analysis demonstrated Sertoli cell vacuolation, impaired spermatogenesis, and increased permeability of the blood-testis barrier. RT-PCR analysis of cKO testes showed decreased expression of germ cell markers and increased expression of testicular injury markers. Our findings support the premise that GATA4 is a key transcriptional regulator of Sertoli cell function in adult mice.
Excessive cell proliferation and decreased apoptosis have been implicated in the pathogenesis of ovarian granulosa cell tumors (GCTs). We hypothesized that transcription factor GATA-4 controls expression of the antiapoptotic factor Bcl-2 and the cell cycle regulator cyclin D2 in normal and neoplastic granulosa cells. To test this hypothesis, a tissue microarray based on 80 GCTs was subjected to immunohistochemistry for GATA-4, Bcl-2, and cyclin D2, and the data were correlated to clinical and histopathological parameters. In addition, quantitative RT-PCR for GATA-4, Bcl-2, and cyclin D2 was performed on 21 human GCTs. A mouse GCT model was used to complement these studies. The role of GATA-4 in the regulation of Bcl2 and ccdn2 (coding for cyclin D2) was studied by transactivation assays, and by disrupting GATA-4 function with dominant negative approaches in mouse and human GCT cell lines. We found that GATA-4 expression correlated with Bcl-2 and cyclin D2 expression in human and murine GCTs. Moreover, GATA-4 enhanced Bcl-2 and cyclin D2 promoter activity in murine GCT cells. Whereas GATA-4 overexpression up-regulated and dominant negative GATA-4 suppressed Bcl-2 expression in human GCT cells, the effects on cyclin D2 were negligible. Our results reveal a previously unknown relationship between GATA-4 and Bcl-2 in mammalian granulosa cells and GCTs, and suggest that GATA-4 influences granulosa cell fate by transactivating Bcl-2. (Endocrinology 149: 5635-5642, 2008)
Disturbances in granulosa cell apoptosis have been implicated in the pathogenesis of human granulosa cell tumors (GCTs). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cytokine that induces apoptosis in a variety of malignancies without toxic effects on benign cells. The aim of this study was to investigate the expression and functionality of the TRAIL receptors DR4 and DR5 in human GCTs. Additionally, we examined the role of GATA4, a transcription factor expressed in normal and malignant granulosa cells, in TRAIL-induced GCT apoptosis. For this purpose, a tissue microarray of 80 primary and 12 recurrent GCTs was subjected to immunohistochemistry for DR4 and DR5, and freshly isolated primary GCT cultures were utilized to evaluate the functional effects of TRAIL on GCT cells. To clarify the role of GATA4 in the regulation of TRAIL-induced apoptosis, a human GCT-derived cell line (KGN) was transduced with lentiviral vectors expressing small hairpin RNAs targeting GATA4 or transfected with adenovirus expressing either wild-type or dominant negative mutant GATA4. We found that receptors DR4 and DR5 are expressed in a vast majority of GCTs as well as in primary GCT cultures, and that TRAIL induces apoptosis in the primary GCT cultures. Moreover, we showed that overexpressing GATA4 protects GCTs from TRAIL-induced apoptosis in vitro, whereas disrupting GATA4 function induces apoptosis and potentiates the apoptotic effect of TRAIL administration. Our results demonstrate that the TRAIL pathway is functional in GCT cells, and suggest that transcription factor GATA4 may function as a survival factor in this ovarian malignancy.
Part of heterodimeric inhibin, inhibin-is crucial for mammalian ovarian function. Regulation of inhibin-expression in granulosa cells is both endocrine, primarily by follicle-stimulating hormone (FSH), and paracrine, primarily by members of the transforming growth factor (TGF-) superfamily. Smad proteins transmit TGF-signals to the nucleus, but the cooperating transcription factors involved in inhibin-promoter activation remain unknown. Transcription factor GATA-4 regulates inhibin-in gonadal cells, and the FSH cascade activates GATA-4. We hypothesized that the TGFsignalling cascade and GATA-4 also cooperate to regulate inhibin-expression. In KK-1 granulosa tumour cells, which resemble normal granulosa cells and express inhibin-, we found that TGF-upregulated GATA-4 expression. Transient transfection experiments in KK-1 cells demonstrated that dominant negative GATA-4 variants or mutations of GATA-binding sites in the inhibin-promoter attenuated TGF--induced gene activation. In GATA-4-deficient COS-7 cells, TGF-enhanced the expression of the inhibin-promoter only in the presence of exogenous GATA-4. Smad3, but not Smad2, cooperated with GATA-4 in the transcriptional activation of the inhibin-promoter, and immunoprecipitation experiments in KK-1 cells revealed a physical Smad3:GATA-4 interaction. Our data suggest that GATA-4, interacting with Smad3, is a cofactor for TGF-signalling to activate inhibin-in granulosa cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.