1) Pituitary LH cannot be the initial stimulus for fetal testicular steroidogenesis. 2) Some paracrine factor(s) probably turn on and maintain early fetal testicular steroidogenesis before the later onset of LH secretion, although a constitutive component in the onset of steroidogenesis is also possible. 3) VIP and PACAP-27 are likely candidates for a paracrine stimulus of the fetal testis.
Prostate cancer is the second leading cause of cancer mortality in men in developed countries. Due to the heterogeneous nature of the disease, design of novel personalized treatments is required to achieve efficient therapeutic responses. We have recently identified phospholipase 2 group VII (PLA2G7) as a potential drug target especially in ERG oncogene positive prostate cancers. Here, the expression profile of PLA2G7 was studied in 1137 prostate cancer and 409 adjacent non-malignant prostate tissues using immunohistochemistry to validate its biomarker potential and putative association with disease progression. In order to reveal the molecular alterations induced by PLA2G7 impairment, lipidomic and gene expression profiling was performed in response to PLA2G7 silencing in cultured prostate cancer cells. Moreover, the antineoplastic effect of statins combined with PLA2G7 impairment was studied in prostate cancer cells to evaluate the potential of repositioning of in vivo compatible drugs developed for other indications towards anti-cancer purposes. The results indicated that PLA2G7 is a cancer-selective biomarker in 50% of prostate cancers and associates with aggressive disease. The alterations induced by PLA2G7 silencing highlighted the potential of PLA2G7 inhibition as an anti-proliferative, pro-apoptotic and anti-migratorial therapeutic approach in prostate cancer. Moreover, the anti-proliferative effect of PLA2G7 silencing was potentiated by lipid-lowering statins in prostate cancer cells. Taken together, our results support the potential of PLA2G7 as a biomarker and a drug target in prostate cancer and present a rationale for combining PLA2G7 inhibition with the use of statins in prostate cancer management.
An Ala189Val mutation of the human FSH receptor (FSHR) has been found to cause hypergonadotrophic ovarian failure with arrest of follicular maturation in women, and suppressed spermatogenesis in men. We have now characterized the molecular mechanisms of the receptor inactivation. Wild-type and mutant FSHR cDNAs were expressed in monkey kidney (COS-7) cells and murine granulosa tumour (KK-1) cells. Similar steady-state levels of FSHR mRNA were found in COS-7 and KK-1 cells transfected with both types of FSHR cDNA. Conspicuously, immunofluorescence and confocal microscopy studies revealed that whereas the wild-type receptor could be readily detected on the plasma membrane, most of the mutated protein was intracellularly sequestered. Ligand binding studies confirmed the greatly reduced cell surface expression of the mutant FSHR. A low level of mutated receptors were expressed at the cell surface, as shown by ligand binding and cAMP response. The capacity of these receptors to evoke another second messenger response, that of inositol trisphosphate (IP3), was almost totally lost. This finding may be related to the clinical picture of the patients, i.e. blockade of follicular maturation. There is a highly conserved stretch of five amino acids (Ala-Phe-Asn-Gly-Thr) in the region of the mutation in all glycoprotein hormone receptors. We therefore created the same Ala to Val transition in the human LHR and studied its functional consequences. Similar functional alterations, i.e. intracellular sequestration and attenuated signal transduction, were found, as with mutated FSHR. Hence, this particular mutation in the conserved extracellular region of glycoprotein hormone receptors induces a conformational change that suppresses cell membrane targeting of the mutated receptor, probably through altered intracellular folding.
We conclude that prostate tissue can concentrate genistein and daidzein. Significant elevation of intraprostatic genistein and daidzein concentrations can be achieved with a short-term dietary phytoestrogen supplementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.