A new class of solutions to the scalar wave equation was introduced recently that represents transversely localized but totally nondiffracting fields. We show by the method of stationary phase that any of these wave fields can be realized approximately with a laser and a single computer-generated hologram. We briefly discuss various techniques for coding and fabrication of the required hologram and the associated diffraction efficiencies. Using both binary-amplitude and four-level phase holograms, we demonstrate experimentally the formation of arbitrary-order Bessel beams and rotationally nonsymmetric beams.
Separable binary-phase array illuminators for fan-out up to 1024 x 1024 and ~65% two-dimensional efficiency are designed by simulated annealing with constraints for maximizing the minimum feature size. A new nonseparable trapezoidal coding technique is introduced and applied to design high-efficiency (~75%-80%) array generators for fan-out up to 16 x 16. A rigorous electromagnetic diffraction theory is used to evaluate the range of validity of the scalar designs (both grating period and input angle are considered), to analyze fabrication errors (slanted groove walls and undercutting), and to design binary resonance-domain one-dimensional array generators with 90%-100% efficiency. Trapezoidal gratings for low fan-out (8 x 8), separable gratings for high fan-out (up to 128 x 128), and a 1 x 5 resonance domain (100% efficient) reflection grating are demonstrated experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.