a b s t r a c tA challenge in using bioactive melt-derived glass in bone regeneration is to produce scaffolds with interconnected pores while maintaining the amorphous nature of the glass and its associated bioactivity. Here we introduce a method for creating porous melt-derived bioactive glass foam scaffolds with low silica content and report in vitro and preliminary in vivo data. The gel-cast foaming process was adapted, employing temperature controlled gelation of gelatin, rather than the in situ acrylic polymerisation used previously. To form a 3D construct from melt derived glasses, particles must be fused via thermal processing, termed sintering. The original Bioglass Ò 45S5 composition crystallises upon sintering, altering its bioactivity, due to the temperature difference between the glass transition temperature and the crystallisation onset being small. Here, we optimised and compared scaffolds from three glass compositions, ICIE16, PSrBG and 13-93, which were selected due to their widened sintering windows. Amorphous scaffolds with modal pore interconnect diameters between 100-150 mm and porosities of 75% had compressive strengths of 3.4 ± 0.3 MPa, 8.4 ± 0.8 MPa and 15.3 ± 1.8 MPa, for ICIE16, PSrBG and 13-93 respectively. These porosities and compressive strength values are within the range of cancellous bone, and greater than previously reported foamed scaffolds. Dental pulp stem cells attached to the scaffold surfaces during in vitro culture and were viable. In vivo, the scaffolds were found to regenerate bone in a rabbit model according to X-ray micro tomography imaging. Statement of SignificanceThis manuscript describes a new method for making scaffolds from bioactive glasses using highly bioactive glass compositions. The glass compositions have lower silica content that those that have been previously made into amorphous scaffolds and they have been designed to have similar network connectivity to that of the original (and commercially used) 45S5 Bioglass. The aim was to match Bioglass' bioactivity. The scaffolds retain the amorphous nature of bioactive glass while having an open pore structure and compressive strength similar to porous bone (the original 45S5 Bioglass crystallises during sintering, which can cause reduced bioactivity or instability).The new scaffolds showed unexpectedly rapid bone regeneration in a rabbit model.
Additive manufacturing via melt electrowriting (MEW) can create ordered microfiber scaffolds relevant for bone tissue engineering; however, there remain limitations in the adoption of new printing materials, especially in MEW of biomaterials. For example, while promising composite formulations of polycaprolactone with strontium‐substituted bioactive glass have been processed into large or disordered fibres, from what is known, biologically‐relevant concentrations (>10 wt%) have never been printed into ordered microfibers using MEW. In this study, rheological characterization is used in combination with a predictive mathematical model to optimize biomaterial formulations and MEW conditions required to extrude various PCL and PCL/SrBG biomaterials to create ordered scaffolds. Previously, MEW printing of PCL/SrBG composites with 33 wt% glass required unachievable extrusion pressures. The composite formulation is modified using an evaporable solvent to reduce viscosity 100‐fold to fall within the predicted MEW pressure, temperature, and voltage tolerances, which enabled printing. This study reports the first fabrication of reproducible, ordered high‐content bioactive glass microfiber scaffolds by applying predictive modeling.
Background Bioactive glasses are traditionally associated with bonding to bone through a hydroxycarbonate apatite (HCA) surface layer but the release of active ions is more important for bone regeneration. They are now being used to deliver ions for soft tissue applications, particularly wound healing. Cobalt is known to simulate hypoxia and provoke angiogenesis. The aim here was to develop new bioactive glass compositions designed to be scaffold materials to locally deliver pro-angiogenic cobalt ions, at a controlled rate, without forming an HCA layer, for wound healing applications. Methods New melt-derived bioactive glass compositions were designed that had the same network connectivity (mean number of bridging covalent bonds between silica tetrahedra), and therefore similar biodegradation rate, as the original 45S5 Bioglass. The amount of magnesium and cobalt in the glass was varied, with the aim of reducing or removing calcium and phosphate from the compositions. Electrospun poly(ε-caprolactone)/bioactive glass composites were also produced. Glasses were tested for ion release in dissolution studies and their influence on Hypoxia-Inducible Factor 1-alpha (HIF-1α) and expression of Vascular Endothelial Growth Factor (VEGF) from fibroblast cells was investigated. Results Dissolution tests showed the silica rich layer differed depending on the amount of MgO in the glass, which influenced the delivery of cobalt. The electrospun composites delivered a more sustained ion release relative to glass particles alone. Exposing fibroblasts to conditioned media from these composites did not cause a detrimental effect on metabolic activity but glasses containing cobalt did stabilise HIF-1α and provoked a significantly higher expression of VEGF (not seen in Co-free controls). Conclusions The composite fibres containing new bioactive glass compositions delivered cobalt ions at a sustained rate, which could be mediated by the magnesium content of the glass. The dissolution products stabilised HIF-1α and provoked a significantly higher expression of VEGF, suggesting the composites activated the HIF pathway to stimulate angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.