Polysaccharide A (PSA) derived from the human commensal Bacteroides fragilis is a symbiosis factor that stimulates immunologic development within mammalian hosts. PSA rebalances skewed systemic T helper responses and promotes T regulatory cells (Tregs). However, PSA-mediated induction of Foxp3 in humans has not been reported. In mice, PSA-generated Foxp3(+) Tregs dampen Th17 activity thereby facilitating bacterial intestinal colonization while the increased presence and function of these regulatory cells may guard against pathological organ-specific inflammation in hosts. We herein demonstrate that PSA induces expression of Foxp3 along with CD39 among naïve CD4 T cells in vitro while promoting IL-10 secretion. PSA-activated dendritic cells are essential for the mediation of this regulatory response. When cultured with isolated Foxp3(+) Tregs, PSA enriched Foxp3 expression, enhanced the frequency of CD39(+)HLA-DR(+) cells, and increased suppressive function as measured by decreased TNFα expression by LPS-stimulated monocytes. Our findings are the first to demonstrate in vitro induction of human CD4(+)Foxp3(+) T cells and enhanced suppressive function of circulating Foxp3(+) Tregs by a human commensal bacterial symbiotic factor. Use of PSA for the treatment of human autoimmune diseases, in particular multiple sclerosis and inflammatory bowel disease, may represent a new paradigm in the approach to treating autoimmune disease.
The emergence and rapid global spread of the new Delta and, more recently, Omicron variants of SARS-CoV-2 pose a daunting public health emergency. Being an RNA virus, the Covid-19 virus is continuing to mutate, resulting in the emergence of new variants with high transmissibility, such as the recently discovered Omicron variant. In this paper, we consider the conditions that may facilitate viral mutations and the emergence of variants with the ability to evade immunity. Here, we have discussed the importance of vaccination with the currently available vaccines. These vaccines are highly effective at preventing serious disease, hospitalization, and death from Covid-19. However, the antibody response induced by these vaccines is short-lasting and there are reports of breakthrough infections. A stable and persistent interaction between T follicular helper cells and germinal center B cells is needed for robust B cell memory response. We discussed the potential reasons behind the breakthrough infections and underscored the importance of developing better second-generation vaccines that may not necessitate frequent booster immunizations and are preventive in nature. This may involve the development of multivalent vaccines and creating vaccines against other viral proteins including conserved proteins. Vaccine hesitancy remains a notable hurdle for implementing vaccination. Furthermore, we recommend different approaches to increase vaccine acceptance, which is a critical translational component of a successful vaccine strategy. These perspectives on overcoming the pandemic's current challenges provide strategies to contain SARS-CoV-2 globally.
The rapid spread of SARS-CoV-2, the new coronavirus (CoV), throughout the globe poses a daunting public health emergency. Different preventive efforts have been undertaken in response to this global health predicament; amongst them, vaccine development is at the forefront. Several sophisticated designs have been applied to create a vaccine against SARS-CoV-2, and 44 candidates have already entered clinical trials. At present, it is unclear which ones will meet the objectives of efficiency and safety, though several vaccines are gearing up to obtain emergency approval in the U.S. and Europe. This manuscript discusses the advantages and disadvantages of various vaccine platforms and evaluates the safety and efficacy of vaccines in advance stages. Once a vaccine is developed, the next challenge will be acquisition, deployment, and uptake. The present manuscript describes these challenges in detail and proposes solutions to the vast array of translational challenges. It is evident from the epidemiology of SARS-CoV-2 that the virus will remain a threat to everybody as long as the virus is still circulating in a few. We need affordable vaccines that are produced in sufficient quantity for use in every corner of the world.
Objective:To determine whether as an orally delivered treatment, teriflunomide, an inhibitor of the mitochondrial enzyme dihydroorotate dehydrogenase approved to treat relapsing forms of multiple sclerosis, could affect gut-associated lymphoid tissue (GALT) immune responses functionally.Methods:C57BL/6 mice were treated orally with teriflunomide and flow cytometric analysis of immune GALT cells performed ex vivo, and adoptive transfer experiments were used to test the protective effects of GALT regulatory T (Treg) cells.Results:Teriflunomide reduced the percentages of antigen-presenting cells of Peyer patches when compared to controls. Conversely, a significant increase of the relative frequency of CD39+ Treg cells was observed. In vivo, the protective effect of GALT-derived teriflunomide-induced CD39+ Treg cells was established by adoptive transfer into recipient experimental autoimmune encephalomyelitis mice.Conclusions:Our results identify specific GALT-derived CD39+ Treg cells as a mechanism of action that may contribute to the efficacy of teriflunomide during CNS inflammatory demyelination and as an oral therapeutic in relapsing multiple sclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.