The emergence and rapid global spread of the new Delta and, more recently, Omicron variants of SARS-CoV-2 pose a daunting public health emergency. Being an RNA virus, the Covid-19 virus is continuing to mutate, resulting in the emergence of new variants with high transmissibility, such as the recently discovered Omicron variant. In this paper, we consider the conditions that may facilitate viral mutations and the emergence of variants with the ability to evade immunity. Here, we have discussed the importance of vaccination with the currently available vaccines. These vaccines are highly effective at preventing serious disease, hospitalization, and death from Covid-19. However, the antibody response induced by these vaccines is short-lasting and there are reports of breakthrough infections. A stable and persistent interaction between T follicular helper cells and germinal center B cells is needed for robust B cell memory response. We discussed the potential reasons behind the breakthrough infections and underscored the importance of developing better second-generation vaccines that may not necessitate frequent booster immunizations and are preventive in nature. This may involve the development of multivalent vaccines and creating vaccines against other viral proteins including conserved proteins. Vaccine hesitancy remains a notable hurdle for implementing vaccination. Furthermore, we recommend different approaches to increase vaccine acceptance, which is a critical translational component of a successful vaccine strategy. These perspectives on overcoming the pandemic's current challenges provide strategies to contain SARS-CoV-2 globally.
The rapid spread of SARS-CoV-2, the new coronavirus (CoV), throughout the globe poses a daunting public health emergency. Different preventive efforts have been undertaken in response to this global health predicament; amongst them, vaccine development is at the forefront. Several sophisticated designs have been applied to create a vaccine against SARS-CoV-2, and 44 candidates have already entered clinical trials. At present, it is unclear which ones will meet the objectives of efficiency and safety, though several vaccines are gearing up to obtain emergency approval in the U.S. and Europe. This manuscript discusses the advantages and disadvantages of various vaccine platforms and evaluates the safety and efficacy of vaccines in advance stages. Once a vaccine is developed, the next challenge will be acquisition, deployment, and uptake. The present manuscript describes these challenges in detail and proposes solutions to the vast array of translational challenges. It is evident from the epidemiology of SARS-CoV-2 that the virus will remain a threat to everybody as long as the virus is still circulating in a few. We need affordable vaccines that are produced in sufficient quantity for use in every corner of the world.
Depression of the cellular immune response to Toxoplasma gondii has been reported in both mice and humans. The present study was undertaken to determine the kinetics and mechanism of the observed downregulation of interleukin 2 (IL-2) production during experimental murine toxoplasmosis. For these investigations, the cell-mediated immune response to the wild type (PTg) was compared with that to the less-virulent mutant parasite (PTgB), which is deficient in the major surface antigen, p30 (SAG-1). Spleen cells from infected AJJ mice failed to proliferate in response to Toxoplasma antigens during the first week of infection. Both PTg-and PTgB-infected A/J mice exhibited a significant reduction in the concanavalin A (Con A)-induced lymphoproliferative response. Further, the response of splenocytes from mice infected with the wild-type parasite was significantly diminished compared with that of mice infected with PTgB. The lymphoproliferative response to Con A reached its nadir at day 7 and remained below control levels for at least 14 days postinfection. By day 21 postinfection, the response to Con A and to Toxoplasma antigens was restored to the level observed prior to day 7. Con A-stimulated culture supernatants of spleen cells from mice on day 7 postinfection contained significantly less IL-2 than pormal mice. There was no significant difference in the numbers of binding sites or capacity of high-affinity IL-2 receptors between infected and normal mouse splenocytes as determined by Scatchard analysis. Exogenous IL-2 at different concentrations failed to restore the proliferative response of lymphocytes from infected mice to Con A. Adherent macrophages from 7-day-infected mice were able to suppress IL-2 production by normal splenocytes following stimulation with Con A. The inhibitory activity mediated by infected cells was reversed by the antibody to IL-10 but not transforming growth factor [B. There were insignificant levels of nitric oxide production in both infected and normal splenocytes. These results indicate that during acute murine toxoplasmosis, there is a well-defined period (day 7) during which both the T-cell mitogen and parasite antigen-associated lymphoproliferative response are reduced. Further, there is a reduction in the production of IL-2 and an increase in IL-10, which appear to mediate, in part, the observed downregulation of immunity to T. gondii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.