The present study was designed to investigate the role of glycine in ischemia reperfusion-induced acute kidney injury (AKI) in rats. The AKI was induced in rats by occluding renal pedicles for 40 min followed by reperfusion for 24 h. The AKI was assessed by measuring creatinine clearance, blood urea nitrogen, plasma uric acid, potassium, fractional excretion of sodium, and microproteinuria. The oxidative stress in renal tissues was assessed by quantification of myeloperoxidase activity, thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. Glycine (100, 200, and 400 mg/kg, i.p.) was administered to rats 30 min before subjecting to AKI. The glycinergic receptor blocker, strychnine (0.75 mg/kg i.p.), and glycine-binding site blocker at N-methyl-D-aspartate (NMDA) receptor, kynurenic acid (300 and 600 mg/kg i.p.), were used in the present study. The ischemia reperfusion induced AKI as witnessed by significant change in plasma, urinary, and tissue parameters employed in the present study. Glycine treatment increased ischemia reperfusion-induced AKI. The treatment with strychnine did not show any protection, whereas kynurenic acid ameliorated renal ischemia reperfusion-induced AKI. The results obtained in present study suggest that glycine increases ischemia reperfusion-induced renal damage through NMDA receptor agonism rather than strychnine-sensitive glycinergic receptors. Hence, it is concluded that glycine aggravates ischemia reperfusion-induced AKI. In addition, the activation of strychnine-insensitive glycine-binding site of NMDA receptors is responsible for its renal-damaging effect rather than strychnine-sensitive glycinergic receptors.
The cancer prevalence in the Malwa region of Punjab (1089/million/year) is much higher than the national average cancer prevalence in India (800/million/year). The participants in the present study were 50 healthy individuals and 49 cancer patients all living in the Malwa region of Punjab, with the healthy people being selected from the same household as the cancer patients. High concentrations of several potentially toxic elements were found in hair samples from people living in Punjab. Compared to standard reference ranges, the metals in excess in both the control and patient groups were aluminium (Al), barium (Ba), manganese (Mn), strontium (Sr) and uranium (U). The most significant findings were high lead (Pb), U and Ba concentrations. The maximum values for Ba, Mn, Pb and U were found in hair from breast cancer patients. The mean concentration of U in hair from the breast cancer patients was 0.63 μg U/g, which is more than double the value found in the control group and over six times higher than the reference range of 0.1 μg U/g. Water, soil, and phosphate fertilizers all seem to play a potential role, causing an increased metal burden in Punjabi people living in the Malwa region. The present study indicates that metals, and especially U, may be a factor in the development of breast cancer among Punjabi women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.