Influence of maleylation on the physicochemical and functional properties of rapeseed protein isolate was studied. Acylation increased whiteness value and dissociation of proteins, but reduced free sulfhydryl and disulfide content (p < 0.05). Intrinsic fluorescence emission and FTIR spectra revealed distinct perturbations in maleylated proteins' tertiary and secondary conformations. Increase in surface hydrophobicity, foaming capacity, emulsion stability, protein surface load at oil-water interface and decrease in surface tension at air-water interface, occurred till moderate level of modification. While maleylation impaired foam stability, protein solubility and emulsion capacity were markedly ameliorated (p < 0.05), which are concomitant with decreased droplet size distribution (d 32 ). In-vitro digestibility and cytotoxicity tests suggested no severe ill-effects of modified proteins, especially up to low degrees of maleylation. The study shows good potential for maleylated rapeseed proteins as functional food ingredient.
BackgroundTo investigate the potential of Catharanthus roseus leaf aqueous crude extract (CRACE) as a regulator of adipocyte development and function.Methods3T3-L1 adipogenesis model was used to investigate the effect of CRACE on adipogenesis. 3T3-L1 preadipocytes (for adipogenic differentiation) and mature 3T3-L1 adipocytes (for adipocyte function) were treated with non-toxic doses of CRACE. The outcomes were corroborated by intracellular lipid accumulation, expression of pro-and anti-adipogenic effector molecules. To investigate CRACE mediated lipolysis, cAMP accumulation, glycerol release and phosphorylation of key effector molecules were tested in treated mature adipocytes. Finally, the extract was fractionated to identify the active molecule/s in the extract.ResultsCRACE significantly reduced adipocyte differentiation by modulating PPARγ expression. At early stage CRACE directly targeted Lipin1 expression and consequently impacted KLF7, subsequently expression of GATA2, CEBPα, SREBP1c were targeted, with PPARγ expression, particularly curtailed. While CRACE significantly reduced several lipogenic genes like FAS and GPD1 in mature adipocytes, concomitantly, it greatly increased lipolysis resulting in decreased lipid accumulation in mature adipocytes. The increase in lipolysis was due to decreased Akt activation, increased cAMP level, and PKA activity. The fractionation of CRACE allowed identification of two fractions with potent anti-adipogenic activity. Both the fractions contained 1α, 25-dihydroxy Vitamin D3 as major component.Conclusions1α, 25-dihydroxy Vitamin D3 containing CRACE can be developed into an effective anti-obesity formulation that decreases adipogenesis and increases lipid catabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.