The adoption of Unmanned Aerial Vehicles (UAVs) in numerous sectors is projected to grow exponentially in the future as technology advances and regulation evolves. One of the promising applications of UAVs is in transportation systems. As the current transportation system is moving towards Intelligent Transportation Systems (ITS), UAVs will play a significant role in the functioning of ITS. This paper presents a survey on the recent advances of UAVs and their roles in current and future transportation systems. Moreover, the emerging technologies of UAVs in the transportation section and the current research areas are summarized. From the discussion, the challenges and opportunities of integrating UAVs towards future ITS are highlighted. In addition, some of the potential research areas involving UAVs in future ITS are also identified. This study aims to lay a foundation for the development of future intelligent and resilient transportation systems.
This paper firstly reviews the failure causes, modes and mechanisms of two major types of capacitors used in power electronic systems — metallized film capacitors and electrolytic capacitors. The degradation modeling related to these capacitors is then presented. Both physics-of-failure and data-driven degradation models for reliability and lifetime estimation are discussed. Based on the exhaustive literature review on degradation modeling of capacitors, we provide a critical assessment and future research directions.
The degradation of capacitors under accelerated stress conditions occur in a monotonic and non-linear fashion. Several efforts have been made to model the degradation behavior of capacitor considering either physics-of-failure models or statistical models and subsequently estimate its reliability and lifetime parameters. But most of these models fail to reflect the physical properties of the degradation path, which varies according to several intrinsic and extrinsic factors. These factors introduce random and temporal uncertainty among the population of capacitors. The gamma stochastic process can model both type of uncertainties among the population of capacitors. In this paper, we model the capacitor degradation by non-homogeneous gamma stochastic process in which both the model parameters (shape and scale) are dependent on stress variables. The model parameters are estimated using the maximum likelihood estimation approach.
Sustainability is a key factor in the development of new materials for plant pots, given the significant environmental impact of traditional plastic-based pots. Researchers have paid attention to developing biodegradable and sustainable alternatives to petroleum-based pots. In this study, two novel bioplastic formulations are developed, which incorporated soy-based by-product fractions to produce plant pots with self-fertilizing capability while also being cost-competitive. A 3D-printing process, fused filament fabrication, is used to produce plant containers from the filaments of soy-based new materials. Further, a small-scale greenhouse experiment is conducted to compare the performance of the soy-based 3D-printed bioplastic pots with pure polylactic acid (PLA) 3D-printed pots and traditional plastic pots, by growing a fruit-bearing plant (tomato) and a flowering plant (zinnia). Plant growth properties and root circling are analyzed, and the results show that the soy-based pots performed comparably to traditional plastic pots, especially in dry conditions, and also reduced root circling. While a more in-depth analysis is necessary, these initial findings suggest that using soy-based fractions and 3D-printing technology could provide a sustainable approach to developing plant pots, which could reduce the environmental impact of plastic-based containers and improve plant health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.