This paper describes a fully coupled, wave-to-wire time-domain model that can simulate the hydrodynamic, mechanical, and electrical response of an array of wave energy converters. Arrays of any configuration can be simulated to explore both the effects of the array on the electricity network and of network events on the devices within the array. State-space modeling of the hydrodynamic radiation forces enables fast and accurate prediction of the interacting response of multiple devices, including the effects of wave climate, control strategies, and network power flow. Case studies include the demonstration of the bidirectional interaction of the array and the network.
Tidal stream turbines are subject to large hydrodynamic loads, including those induced by extreme waves. Scale model testing in the laboratory plays an important role in ensuring that full scale tidal turbines are designed and operated in a manner that is appropriate for harsh ocean environments where waves and tidal currents coexist. For the first time, a fully-instrumented scaled tidal turbine is tested in short-duration focused wave groups representative of extreme environmental load cases expected at energetic tidal sites. In this paper, the subsequent variations in rotor-based loads, power and blade root bending moments are reported. These measurements are found to strongly follow the spectral and temporal form of the focused wave conditions, and peak loads and power output are found to exceed current-only values by 85% and 200% respectively. These rotor-averaged values display a high level of repeatability, demonstrating the suitability of focused waves for testing seabed-mounted tidal turbines. Extreme blade loads, which are dependent on angular position relative to wave phase, are captured through rapidly obtained repeat tests. New insight is subsequently gained into loading and response of tidal turbines in extreme sea conditions.
Tidal stream turbines are subject to complex flow conditions, particularly when installed in staggered array configurations where the downstream turbines are affected by the wake and/or bypass flow of upstream turbines. This work presents, for the first time, methods for and results from the physical testing of three 1/15 scale instrumented turbines configured in a closely-spaced staggered array, and demonstrates experimentally that increased power extraction can be achieved through reduced array separation. A comprehensive set of flow measurements was taken during several weeks testing in the FloWave Ocean Energy Research Facility, with different configurations of turbines installed in the tank in a current of 0.8 m/s, to understand the effect that the front turbines have on flow through the array and on the inflow to the centrally placed rearmost turbine. Loads on the turbine structure, rotor, and blade roots were measured along with the rotational speed of the rotor to assess concurrently in real-time the effects of flow and array geometry on structural loading and performance. Operating in this closely-spaced array was found to improve the power delivered by the rear turbine by 5.7–10.4% with a corresponding increase in the thrust loading on the rotor of 4.8–7.3% around the peak power operating point. The experimental methods developed and results arising from this work will also be useful for further scale-testing elsewhere, validating numerical models, and for understanding the performance and loading of full-scale tidal stream turbines in arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.