We consider the problem of estimating the mean and covariance of a distribution from iid samples in R n , in the presence of an η fraction of malicious noise; this is in contrast to much recent work where the noise itself is assumed to be from a distribution of known type. The agnostic problem includes many interesting special cases, e.g., learning the parameters of a single Gaussian (or finding the best-fit Gaussian) when η fraction of data is adversarially corrupted, agnostically learning a mixture of Gaussians, agnostic ICA, etc. We present polynomial-time algorithms to estimate the mean and covariance with error guarantees in terms of informationtheoretic lower bounds. As a corollary, we also obtain an agnostic algorithm for Singular Value Decomposition. * Georgia Tech.
Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.
In this paper we introduce a notion of spectral approximation for directed graphs. While there are many potential ways one might define approximation for directed graphs, most of them are too strong to allow sparse approximations in general. In contrast, we prove that for our notion of approximation, such sparsifiers do exist, and we show how to compute them in almost linear time.Using this notion of approximation, we provide a general framework for solving asymmetric linear systems that is broadly inspired by the work of [Peng-Spielman, STOC'14]. Applying this framework in conjunction with our sparsification algorithm, we obtain an almost-lineartime algorithm for solving directed Laplacian systems associated with Eulerian Graphs. Using this solver in the recent framework of [Cohen-Kelner-Peebles-Peng-Sidford-Vladu, FOCS'16], we obtain almost linear time algorithms for solving a directed Laplacian linear system, computing the stationary distribution of a Markov chain, computing expected commute times in a directed graph, and more.For each of these problems, our algorithms improves the previous best running times of O((nm 3/4 + n 2/3 m) log O(1) (nκ −1 )) to O((m + n2 O( √ log n log log n) ) log O(1) (nκ −1 )) where n is the number of vertices in the graph, m is the number of edges, κ is a natural condition number associated with the problem, and is the desired accuracy. We hope these results open the door for further studies into directed spectral graph theory, and that they will serve as a stepping stone for designing a new generation of fast algorithms for directed graphs.
We show variants of spectral sparsification routines can preserve the total spanning tree counts of graphs, which by Kirchhoff's matrix-tree theorem, is equivalent to determinant of a graph Laplacian minor, or equivalently, of any SDDM matrix. Our analyses utilizes this combinatorial connection to bridge between statistical leverage scores / effective resistances and the analysis of random graphs by [Janson, Combinatorics, Probability and Computing '94]. This leads to a routine that in quadratic time, sparsifies a graph down to about n 1.5 edges in ways that preserve both the determinant and the distribution of spanning trees (provided the sparsified graph is viewed as a random object). Extending this algorithm to work with Schur complements and approximate Choleksy factorizations leads to algorithms for counting and sampling spanning trees which are nearly optimal for dense graphs.We give an algorithm that computes a (1 ± δ) approximation to the determinant of any SDDM matrix with constant probability in about n 2 δ −2 time. This is the first routine for graphs that outperforms general-purpose routines for computing determinants of arbitrary matrices. We also give an algorithm that generates in about n 2 δ −2 time a spanning tree of a weighted undirected graph from a distribution with total variation distance of δ from the w -uniform distribution .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.