Nomenclature W(x, y) -deflection function; x, y -coordinates in the plane of plate; v -Poisson's ratio; ρ -density of the plate material, kg/m 3 ; g -plate thickness, m; T(t) -time function; D % -visco-elastic operator; E -Young modulus, N/m 2 ; a -length of the rectangular plate, m; b -breadth of the rectangular plate, m; η -visco-elastic constant, Ns/m 2 ; G -shear modulus, N/m 2 .
Most of the machines and engineering structures experience vibration and their design generally requires consideration for their dynamic behavior. Due to this, the study of vibration, as it deals with the vibratory behavior of bodies, is acquiring increasingly importance in several engineering applications, nuclear reactor technology and aeronautical field etc. Most of the work has been done in the field of elastic and non-elastic behavior of the bodies but a very little work is done in the field of visco-elastic bodies with varying thickness. The analysis presented here is to study the effect of taper constants on free vibration of a clamped visco-elastic rectangular plate with parabolically varying thickness. The two-dimensional thickness variation is taken as the Cartesian product of parabolic variations along the two concurrent edges of the plate. Using Rayleigh-Ritz method, frequency equation derives. Logarithmic decrement, time period and deflection for the first two modes of vibration are calculated for various values of taper constants and aspect ratio.
A mathematical model is constructed to help the engineers in designing various mechanical structures mostly used in satellite and aeronautical engineering. In the present model, vibration of rectangular plate with nonuniform thickness is discussed. Temperature variations are considered biparabolic, that is, parabolic in x-direction and parabolic in y-direction. The fourth-order differential equation of the motion is solved by Rayleigh Ritz method for three different boundary conditions around the boundary of plate. Numerical values of frequencies for the first two modes of vibration are presented in tabular form for different values of thermal gradient, taper constants, and aspect ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.