In internally coupled ears, displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull and cause displacement of the opposing eardrum, and conversely. By modeling the membrane, passages, and propagating pressure waves, we show that internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both these cues are directionally dependent. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification from a high-frequency domain with considerable amplitude magnification.
In internally coupled ears (ICE), the displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull, causing a displacement of the opposing eardrum and vice versa. In this review, a thorough mathematical analysis of the membranes, passages, and propagating pressure waves reveals how internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both of these cues are directionally dependent. On the basis of the geometry of the interaural cavity and the elastic properties of the two eardrums confining it at both ends, the present paper reviews the mathematical theory underlying hearing through ICE and derives analytical expressions for eardrum vibrations as well as the pressures inside the internal passages, which ultimately lead to the emergence of highly directional hearing cues. The derived expressions enable one to explicitly see the influence of different parts of the system, e.g., the interaural cavity and the eardrum, on the internal coupling, and the frequency dependence of the coupling. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification (time dilation factor) from a high-frequency domain with considerable amplitude magnification. By exploiting the physical properties of the coupling, we describe a concrete method to numerically estimate the eardrum's fundamental frequency and damping solely through measurements taken from a live animal.
The Internet of Things (IoT) is characterized by a large number of interconnected devices or assets. Measurement instruments in the IoT are typically digital in the sense that their indications are available only as digital output. Moreover, a growing number of IoT sensors contain a built-in pre-processing system, e.g., for compensating unwanted effects. This paper considers the application of metrological principles to such so-called “smart sensors” in the IoT. It addresses the calibration of digital sensors, mathematical and semantic approaches, the communication of data quality and the meaning of traceability for the IoT in general.
The annotation of sensor data with semantic metadata is essential to the goals of automation and interoperability in the context of Industry 4.0. In this contribution, we outline a semantic description of quality of data in sensor networks in terms of indicators, metrics and interpretations. The concepts thus defined are consolidated into an ontology that describes quality of data metainformation in heterogeneous sensor networks and methods for the determination of corresponding quality of data dimensions are outlined. By incorporating support for sensor calibration models and measurement uncertainty via a previously derived ontology, a conformity with metrological requirements for sensor data is ensured. A quality description for a calibrated sensor generated using the resulting ontology is presented in the JSON-LD format using the battery level and calibration data as quality indicators. Finally, the general applicability of the model is demonstrated using a series of competency questions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.