SUMMARYAlthough hearing has been described for many underwater species, there is much debate regarding if and how cephalopods detect sound. Here we quantify the acoustic sensitivity of the longfin squid (Loligo pealeii) using near-field acoustic and shakergenerated acceleration stimuli. Sound field pressure and particle motion components were measured from 30 to 10,000Hz and acceleration stimuli were measured from 20 to 1000Hz. Responses were determined using auditory evoked potentials (AEPs) with electrodes placed near the statocysts. Evoked potentials were generated by both stimuli and consisted of two wave types: (1) rapid stimulus-following waves, and (2) slower, high-amplitude waves, similar to some fish AEPs. Responses were obtained between 30 and 500Hz with lowest thresholds between 100 and 200Hz. At the best frequencies, AEP amplitudes were often >20V. Evoked potentials were extinguished at all frequencies if (1) water temperatures were less than 8°C, (2) statocysts were ablated, or (3) recording electrodes were placed in locations other than near the statocysts. Both the AEP response characteristics and the range of responses suggest that squid detect sound similarly to most fish, with the statocyst acting as an accelerometer through which squid detect the particle motion component of a sound field. The modality and frequency range indicate that squid probably detect acoustic particle motion stimuli from both predators and prey as well as low-frequency environmental sound signatures that may aid navigation. Supplementary material available online at
SUMMARY Lizards have highly sensitive ears, but most lizard heads are small (1-2 cm in diameter) compared to the wavelengths of sound of frequencies to which they are most sensitive (1-4 kHz, wavelengths 34-8.5 cm). Therefore, the main cues to sound direction that mammals use - binaural time and intensity cues due to arrival-time differences and sound shadowing by the head - will be very small in lizards. The present work shows that acoustical coupling of the two eardrums in lizards produces the largest directionality of any terrestrial vertebrate ear studied. Laser vibrometric studies of tympanic motion show pronounced directionality within a 1.8-2.4 kHz frequency band around the best frequency of hearing, caused by the interference of ipsi- and contralateral inputs. The results correspond qualitatively to the response of a simple middle ear model,assuming coupling of the tympana through a central cavity. Furthermore,observed directional responses are markedly asymmetrical, with a steep gradient of up to 50-fold (34 dB) response differences between ipsi- and contralateral frontal angles. Therefore, the directionality is easily exploitable by simple binaural subtraction in the brain. Lizard ears are the clearest vertebrate examples of directionality generated by tympanic coupling.
Lizard ears are clear examples of two-input pressuredifference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi-and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct and indirect sound components on the eardrum. The ensuing pressure-difference characteristics generate the highest directionality of any similar-sized terrestrial vertebrate ear. The aim of the present study was to measure the gain of the direct and indirect sound components in three lizard species: Anolis sagrei and Basiliscus vittatus (iguanids) and Hemidactylus frenatus (gekkonid) by laser vibrometry, using either free-field sound or a headphone and coupler for stimulation. The directivity of the ear of these lizards is pronounced in the frequency range from 2 to 5 kHz. The directivity is ovoidal, asymmetrical across the midline, but largely symmetrical across the interaural axis (i.e., front-back). Occlusion of the contralateral ear abolishes the directionality. We stimulated the two eardrums with a coupler close to the eardrum to measure the gain of the sound pathways. Within the frequency range of maximal directionality, the interaural transmission gain (compared to sound arriving directly) is close to or even exceeds unity, indicating a pronounced acoustical transparency of the lizard head and resonances in the interaural cavities. Our results show that the directionality of the lizard ear is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit.
In internally coupled ears, displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull and cause displacement of the opposing eardrum, and conversely. By modeling the membrane, passages, and propagating pressure waves, we show that internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both these cues are directionally dependent. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification from a high-frequency domain with considerable amplitude magnification.
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500-600 Hz with a maximum of 300 mm s 21 Pa 21 , approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300-500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20-30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.