New magnetic iron oxide (Fe3O4)/activated charcoal (AC)/β-cyclodextrin (CD)/sodium alginate (Alg) polymer nanocomposite materials were prepared by direct mixing of the polymer matrix with the nanofillers. The obtained materials were utilized as nano-adsorbents for the elimination of methylene blue (MB), a hazardous water-soluble cationic dye, from aqueous solutions, and showed excellent regeneration capacity. The formation of the nanocomposites was followed by high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometry (EDX), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and adsorption of N2 at −196 °C. The rate of adsorption was investigated varying several factors, namely contact time, pH, amount of adsorbent and MB concentration on the adsorption process. Studies dealing with equilibrium and kinetics were carried out in batch conditions. The obtained results indicated that the removal rate of MB was 99.53% in 90 min. Langmuir’s isotherm fitted better to the equilibrium data of MB. Fe3O4/AC/CD/Alg polymer beads shows amazing adsorption capacities in the elimination of cationic dyes (2.079 mg/g for polymer gel beads and 10.63 mg g−1 for dry powder beads), in comparison to other adsorbent materials. The obtained adsorbent is spherical with hydrophobic cross-linked surface properties that enable an easy recovery without any significant weight loss of in the adsorbent used.
Summary
Silver nanoparticle entrapped calcium‐alginate beads (AgNP‐CAB) were successfully synthesized as adsorbent for effective removal of Fe(II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA). Batch adsorption experiments were used to determine the adsorption capacity. The influence of various factors (such as temperature, pH, adsorbent dosage and contact time) on adsorption behaviour was investigated. The adsorbent thus developed showed higher uptake at pH 4, and adsorption the capacity decreased with increasing temperature. The kinetic results for the adsorption process were interpreted using pseudo‐first order and pseudo‐second order rate equations, as well as Elovich and intra‐particle diffusion models. A good correlation with the pseudo‐second order rate kinetics (R2 = 0.998) could be observed. Adsorption isotherms were fitted to Langmuir, Freundlich, Temkin and Harkins–Jura isotherms whereby the experimental data was found to best fitted for the Langmuir model. The maximum adsorption capacity of adsorbent was found to be 236.40 mg/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.