Salmonella typhimurium is an invasive pathogen that causes diseases ranging from mild gastroenteritis to enteric fever. During the infection process, S. typhimurium induces a number of virulence genes required to circumvent host defences and/or acquire nutrients in the host. We have used the in vivo expression technology (IVET) system to select for S. typhimurium genes that are induced after invasion of a murine cultured cell line. We have characterized a putative iron transporter in Salmonella pathogenicity island 1, termed sitABCD. The sitABCD operon is induced under iron‐deficient conditions in vitro and is repressed by Fur. This locus is induced in the animal specifically after invasion of the intestinal epithelium. We show that a sit null mutant is significantly attenuated in BALB/c mice, suggesting that SitABCD plays an important role in iron acquisition in the animal.
The tubulin homolog FtsZ forms a polymeric membrane-associated ring structure (Z ring) at midcell that establishes the site of division and provides an essential framework for the localization of a multiprotein molecular machine that promotes division in
Escherichia coli
. A number of regulatory proteins interact with FtsZ and modulate FtsZ assembly/disassembly processes, ensuring the spatiotemporal integrity of cytokinesis. The Z-associated proteins (ZapA, ZapB, and ZapC) belong to a group of FtsZ-regulatory proteins that exhibit functionally redundant roles in stabilizing FtsZ-ring assembly by binding and bundling polymeric FtsZ at midcell. In this study, we report the identification of ZapD (YacF) as a member of the
E. coli
midcell division machinery. Genetics and cell biological evidence indicate that ZapD requires FtsZ but not other downstream division proteins for localizing to midcell, where it promotes FtsZ-ring assembly via molecular mechanisms that overlap with ZapA. Biochemical evidence indicates that ZapD directly interacts with FtsZ and promotes bundling of FtsZ protofilaments. Similarly to ZapA, ZapB, and ZapC, ZapD is dispensable for division and therefore belongs to the growing group of FtsZ-associated proteins in
E. coli
that aid in the overall fitness of the division process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.