NRAMPs (natural resistance‐associated macrophage proteins) have been characterized in mammals as divalent transition metal transporters involved in iron metabolism and host resistance to certain pathogens. The mechanism of pathogen resistance is proposed to involve sequestration of Fe2+ and Mn2+, cofactors of both prokaryotic and eukaryotic catalases and superoxide dismutases, not only to protect the macrophage against its own generation of reactive oxygen species, but to deny the cations to the pathogen for synthesis of its protective enzymes. NRAMP homologues are also present in bacteria. We report the cloning and characterization of the single NRAMP genes in Escherichia coli and Salmonella enterica ssp. typhimurium, and the cloning of two distinct NRAMP genes from Pseudomonas aeruginosa and an internal fragment of an NRAMP gene in Burkholderia cepacia. The genes are designated mntH because the two enterobacterial NRAMPs encode H+‐stimulated, highly selective manganese(II) transport systems, accounting for all Mn2+ uptake in each species under the conditions tested. For S. typhimurium MntH, the Km for 54Mn2+ (≈ 0.1 µM) was pH independent, but maximal uptake increased as pH decreased. Monovalent cations, osmotic strength, Mg2+ and Ca2+ did not inhibit 54Mn2+ uptake. Ni2+, Cu2+ and Zn2+ inhibited uptake with Kis greater than 100 µM, Co2+ with a Ki of 20 µM and Fe2+ with a Ki that decreased from 100 µM at pH 7.6 to 10 µM at pH 5.5. Fe3+ and Pb2+ inhibited weakly, exhibiting Kis of 50 µM, while Cd2+ was a potent inhibitor with a Ki of about 1 µM. E. coli MntH had a similar inhibition profile, except that Kis were three‐ to 10‐fold higher. Both S. typhimurium and E. coli MntH also transport 55Fe2+ however, the Kms are equivalent to the Kis for Fe2+ inhibition of Mn2+ uptake, and are thus too high to be physiologically relevant. In both S. typhimurium and E. coli, mntH::lacZ constructs were strongly induced by hydrogen peroxide, weakly induced by EDTA and unresponsive to paraquat, consistent with the presence of Fur and OxyR binding sites in the promoters. Strains overexpressing mntH were more susceptible to growth inhibition by Mn2+ and Cd2+ than wild type, and strains lacking a functional mntH gene were more susceptible to killing by hydrogen peroxide. In S. typhimurium strain SL1344, mntH mutants showed no defect in invasion of or survival in cultured HeLa or RAW264.7 macrophage cells; however, expression of mntH::lacZ was induced severalfold by 3 h after invasion of the macrophages. S. typhimurium mntH mutants showed only a slight attenuation of virulence in BALB/c mice. Thus, the NRAMP Mn2+ transporter MntH and Mn2+ play a role in bacterial response to reactive oxygen species and possibly have a role in pathogenesis.
Though an essential trace element, manganese is generally accorded little importance in biology other than as a cofactor for some free radical detoxifying enzymes and in the photosynthetic photosystem II. Only a handful of other Mn2+-dependent enzymes are known. Recent data, primarily in bacteria, suggest that Mn2+-dependent processes may have significantly greater physiological importance. Two major classes of prokaryotic Mn2+ uptake systems have now been described, one homologous to eukaryotic Nramp transporters and one a member of the ABC-type ATPase superfamily. Each is highly selective for Mn2+ over Fe2+ or other transition metal divalent cations, and each can accumulate millimolar amounts of intracellular Mn2+ even when environmental Mn2+ is scarce. In Salmonella enterica serovar Typhimurium, simultaneous mutation of both types of transporter results in avirulence, implying that one or more Mn2+-dependent enzymes is essential for pathogenesis. This review summarizes current literature on Mn2+ transport, primarily in the Bacteria but with relevant comparisons to the Archaea and Eukaryota. Mn2+-dependent enzymes are then discussed along with some speculations as to their role(s) in cellular physiology, again primarily in Bacteria. It is of particular interest that most of the enzymes which interconvert phosphoglycerate, pyruvate, and oxaloacetate intermediates are either strictly Mn2+-dependent or highly stimulated by Mn2+. This suggests that Mn2+ may play an important role in central carbon metabolism. Further studies will be required, however, to determine whether these or other actions of Mn2+ within the cell are the relevant factors in pathogenesis.
Salmonella enterica serovar Typhimurium has two manganese transport systems, MntH and SitABCD. MntH is a bacterial homolog of the eukaryotic natural resistance-associated macrophage protein 1 (Nramp1), and SitABCD is an ABC-type transporter. Previously we showed that mntH is negatively controlled at the transcriptional level by the trans-acting regulatory factors, MntR and Fur. In this study, we examined the transcriptional regulation of sitABCD and compared it to the transcriptional regulation of mntH by constructing lacZ fusions to the promoter regions with and without mutations in putative MntR and/or Fur binding sites. The presence of Mn caused transcriptional repression of the sitABCD and mntH promoters primarily via MntR, but Fur was also capable of some repression in response to Mn. Likewise, Fe in the medium repressed transcription of both sit and mntH primarily via Fur, although MntR was also involved in this response. Transcriptional control by MntR and Fur was disrupted by site-specific mutations in the putative MntR and Fur binding sites, respectively. Transcription of the sit operon was also affected by the oxygen level and growth phase, but the increased expression observed under high oxygen conditions and higher cell densities is consistent with decreased availability of metals required for repression by the metalloregulatory proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.