NRAMPs (natural resistance‐associated macrophage proteins) have been characterized in mammals as divalent transition metal transporters involved in iron metabolism and host resistance to certain pathogens. The mechanism of pathogen resistance is proposed to involve sequestration of Fe2+ and Mn2+, cofactors of both prokaryotic and eukaryotic catalases and superoxide dismutases, not only to protect the macrophage against its own generation of reactive oxygen species, but to deny the cations to the pathogen for synthesis of its protective enzymes. NRAMP homologues are also present in bacteria. We report the cloning and characterization of the single NRAMP genes in Escherichia coli and Salmonella enterica ssp. typhimurium, and the cloning of two distinct NRAMP genes from Pseudomonas aeruginosa and an internal fragment of an NRAMP gene in Burkholderia cepacia. The genes are designated mntH because the two enterobacterial NRAMPs encode H+‐stimulated, highly selective manganese(II) transport systems, accounting for all Mn2+ uptake in each species under the conditions tested. For S. typhimurium MntH, the Km for 54Mn2+ (≈ 0.1 µM) was pH independent, but maximal uptake increased as pH decreased. Monovalent cations, osmotic strength, Mg2+ and Ca2+ did not inhibit 54Mn2+ uptake. Ni2+, Cu2+ and Zn2+ inhibited uptake with Kis greater than 100 µM, Co2+ with a Ki of 20 µM and Fe2+ with a Ki that decreased from 100 µM at pH 7.6 to 10 µM at pH 5.5. Fe3+ and Pb2+ inhibited weakly, exhibiting Kis of 50 µM, while Cd2+ was a potent inhibitor with a Ki of about 1 µM. E. coli MntH had a similar inhibition profile, except that Kis were three‐ to 10‐fold higher. Both S. typhimurium and E. coli MntH also transport 55Fe2+ however, the Kms are equivalent to the Kis for Fe2+ inhibition of Mn2+ uptake, and are thus too high to be physiologically relevant. In both S. typhimurium and E. coli, mntH::lacZ constructs were strongly induced by hydrogen peroxide, weakly induced by EDTA and unresponsive to paraquat, consistent with the presence of Fur and OxyR binding sites in the promoters. Strains overexpressing mntH were more susceptible to growth inhibition by Mn2+ and Cd2+ than wild type, and strains lacking a functional mntH gene were more susceptible to killing by hydrogen peroxide. In S. typhimurium strain SL1344, mntH mutants showed no defect in invasion of or survival in cultured HeLa or RAW264.7 macrophage cells; however, expression of mntH::lacZ was induced severalfold by 3 h after invasion of the macrophages. S. typhimurium mntH mutants showed only a slight attenuation of virulence in BALB/c mice. Thus, the NRAMP Mn2+ transporter MntH and Mn2+ play a role in bacterial response to reactive oxygen species and possibly have a role in pathogenesis.
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that inhabits a vacuolar compartment, called the Salmonella-containing vacuole (SCV), in infected host cells. Maintenance of the SCV is accomplished by SifA, and mutants of this Salmonella pathogenicity island 2 type III effector replicate more efficiently in epithelial cells. Here we demonstrate that enhanced replication of sifA mutants occurs in the cytosol of these cells. Increased replication of wild-type bacteria was also observed in cells treated with wortmannin or expressing Rab5 Q79L or Rab7 N125I, all of which caused a loss of SCV integrity. Our findings demonstrate the requirement of the host cell endosomal system for maintenance of the SCV and that loss of this compartment allows increased replication of serovar Typhimurium in the cytosol of epithelial cells.
Nramp1 is a transporter that pumps divalent cations from the vacuoles of phagocytic cells and is associated with the innate resistance of mice to diverse intracellular pathogens. We demonstrate that sitA and mntH, genes encoding high-affinity metal ion uptake systems in Salmonella enterica serovar Typhimurium, are upregulated when Salmonella is internalized by Nramp1-expressing macrophages and play an essential role in systemic infection of congenic Nramp1-expressing mice.
Nramp1 (Natural resistance-associated macrophage protein-1; also known as Slc11a1) is a host resistance gene that provides protection against several intracellular pathogens, including Salmonella enterica serovar Typhimurium. Little is known about the dynamic interplay that occurs between mammalian host resistance determinants such as Nramp1 and pathogens during infection. To explore these interactions, we examined the effect of Nramp1 on expression of Salmonella typhimurium (STM) virulence factors. We demonstrate that Salmonella pathogenicity island 2 (SPI2) is essential for replication of STM in spleens of infected Nramp1 ϩ/ϩ mice. Furthermore, the presence of Nramp1 in transfected cell lines and congenic knockout mice resulted in the up-regulation of STM SPI2-associated virulence genes critical for intramacrophage survival. This Nramp1-dependent up-regulation of SPI2 was mimicked in vitro by chelation of iron, demonstrating the iron-responsive nature of expression of STM SPI2-associated virulence genes. We propose that acquisition of SPI2 by S. enterica not only enabled this bacterium to become an effective intracellular pathogen but also allowed the bacterium to withstand the effects of macrophage defense mechanisms such as Nramp1 early in the evolution of its pathogenic character. These dynamic Nramp1-pathogen interactions may be essential for regulating the course of an infection. This study demonstrates the presence of a previously undescribed direct influence of a mammalian innate host resistance locus on a pathogen at the genetic level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.