Open-domain conversational agents or chatbots are becoming increasingly popular in the natural language processing community. One of the challenges is enabling them to converse in an empathetic manner. Current neural response generation methods rely solely on end-to-end learning from large scale conversation data to generate dialogues. This approach can produce socially unacceptable responses due to the lack of large-scale quality data used to train the neural models. However, recent work has shown the promise of combining dialogue act/intent modelling and neural response generation. This hybrid method improves the response quality of chatbots and makes them more controllable and interpretable. A key element in dialog intent modelling is the development of a taxonomy. Inspired by this idea, we have manually labeled 500 response intents using a subset of a sizeable empathetic dialogue dataset (25K dialogues). Our goal is to produce a large-scale taxonomy for empathetic response intents. Furthermore, using lexical and machine learning methods, we automatically analysed both speaker and listener utterances of the entire dataset with identified response intents and 32 emotion categories. Finally, we use information visualization methods to summarize emotional dialogue exchange patterns and their temporal progression. These results reveal novel and important empathy patterns in human-human opendomain conversations and can serve as heuristics for hybrid approaches.
Bioinformatics research continues to advance at an increasing scale with the help of techniques such as next-generation sequencing and the availability of tool support to automate bioinformatics processes. With this growth, a large amount of biological data gets accumulated at an unprecedented rate, demanding high-performance and high-throughput computing technologies for processing such datasets. Use of hardware accelerators, such as graphics processing units (GPUs) and distributed computing, accelerates the processing of big data in high-performance computing environments. They enable higher degrees of parallelism to be achieved, thereby increasing the throughput. In this paper, we introduce BioWorkflow, an interactive workflow management system to automate the bioinformatics analyses with the capability of scheduling parallel tasks with the use of GPU-accelerated and distributed computing. This paper describes a case study carried out to evaluate the performance of a complex workflow with branching executed by BioWorkflow. The results indicate the gains of $\times 2.89$ magnitude by utilizing GPUs and gains in speed by average $\times 2.832$ magnitude (over $n = 5$ scenarios) by parallel execution of graph nodes during multiple sequence alignment calculations. Combined speed-ups are achieved $\times 1.71$ times for complex workflows. This confirms the expected higher speed-ups when having parallelism through GPU-acceleration and concurrent execution of workflow nodes than the mainstream sequential workflow execution. The tool also provides a comprehensive user interface with better interactivity for managing complex workflows; a system usability scale score of 82.9 is confirmed high usability for the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.