High-temperature (HT) ultrasonic transducers are of increasing interest for structural health monitoring (SHM) of structures operating in harsh environments. This article focuses on the development of an HT piezoelectric wafer active sensor (HT-PWAS) for SHM of HT pipelines using ultrasonic guided waves. The PWAS was fabricated using Y-cut gallium phosphate (GaPO4) to produce a torsional guided wave mode on pipes operating at temperatures up to 600 °C. A number of confidence-building tests on the PWAS were carried out. HT electromechanical impedance (EMI) spectroscopy was performed to characterise piezoelectric properties at elevated temperatures and over long periods of time (>1000 h). Laser Doppler vibrometry (LDV) was used to verify the modes of vibration. A finite element model of GaPO4 PWAS was developed to model the electromechanical behaviour of the PWAS and the effect of increasing temperatures, and it was validated using EMI and LDV experimental data. This study demonstrates the application of GaPO4 for guided-wave SHM of pipelines and presents a model that can be used to evaluate different transducer designs for HT applications.
Gallium phosphate single crystal has a very stable thermal response, ideal for high temperature applications such as transducers for in-service monitoring of HT infrastructure in Power and Oil & Gas industries. Broadband transducers are designed to resonate with a specific mode of vibration within a frequency range of interest. This desired frequency response depends on how the transducer is mounted on the structure and the target defect sensitivity. Electrode configurations are defined to achieve the transducer design. This study investigates the parallel and wrap-around electrode configurations on the transducer response. An electro-mechanical finite element model was developed to analyse the transducer response and predicted a disparity in the modes of vibration between the two configurations within the same frequency range. This model was experimentally validated by measuring the displacement patterns using 3D Laser Doppler Vibrometry.
Sheet piles are significantly more prone to advanced corrosion rates due to accelerated low water corrosion. Current inspection and assessment techniques are costly, time-consuming and labour-intensive. Guided wave testing (GWT) has gained increased attention due to its capability of screening long distances; however, it has not been used previously to inspect the active zone in steel sheet piles. This paper focuses on the numerical modelling of wave propagation and defect detection in U-shaped piles to demonstrate the capabilities of GWT for the inspection of non-accessible areas of steel sheet piles. Two shear transducer arrays were designed, bearing high SH0 mode purity and directionality. A wave propagation comparison study concluded that the back wall reflection signal from the web of a U-pile was 11.5% higher than the respective signal from the plate, and the excitation signal in the flange, at 5.65 m and 7.12 m, was respectively 35% and 46% less than the excitation signal in the web at the same distance. Defect reflection, measured from five representative defect scenarios, ranged from 7.5 to 47% of the signal amplitude in the web of the pile and 5 to 32.5% in the flange of the pile.
This chapter presents technological innovations that support asset integrity management-a crucial activity for optimising plant efficiency. In ageing thermal and geothermal power plants, critical assets such as steam piping are subject to high pressures and temperatures that accelerate damage mechanisms. Traditionally, the critical locations of these assets undergo routine inspection which is both costly and time consuming and affects the plant reliability and energy availability. There is an increasing trend in the application of non-destructive testing (NDT) and information technologies to in-service monitoring of these assets. The aim of this chapter is to provide a comprehensive overview of the state-of-the-art monitoring technologies for steamlines, with a focus on high temperature ultrasonic guided wave techniques. The enabling technologies, which include high temperature sensors, diagnostic data analysis algorithms and their monitoring performances, are reviewed. These technological advancements enable inspection without interruption of plant operations, and provide diagnosis and prognosis data for condition-based maintenance, increasing plant safety and its operational efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.