Medial temporal lobe structures have long been implicated in the pathogenesis of major depressive disorder. Although findings of smaller hippocampal and amygdalar volumes are common, inconsistencies remain in the literature. In this targeted review, we examine recent and significant neuroimaging papers examining the volumes of these structures in major depressive disorder. A targeted PubMed/Google Scholar search was undertaken focusing on volumetric neuroimaging studies of the hippocampus and amygdala in major depressive disorder. Where possible, mean volumes and accompanying standard deviations were extracted allowing computation of Cohen’s ds effect sizes. Although not a meta-analysis, this allows a broad comparison of volume changes across studies. Thirty-nine studies in total were assessed. Hippocampal substructures and amygdale substructures were investigated in 11 and 2 studies, respectively. The hippocampus was more consistently smaller than the amygdala across studies, which is reflected in the larger cumulative difference in volume found with the Cohen’s ds calculations. The left and right hippocampi were, respectively, 92% and 91.3% of the volume found in controls, and the left and right amygdalae were, respectively, 94.8% and 92.6% of the volume of controls across all included studies. The role of stress in temporal lobe structure volume reduction in major depressive disorder is discussed.
Studies of early life stress (ELS) demonstrate the long-lasting effects of acute and chronic stress on developmental trajectories. Such experiences can become biologically consolidated, creating individual vulnerability to psychological and psychiatric issues later in life. The hippocampus, amygdala, and the medial prefrontal cortex are all important limbic structures involved in the processes that undermine mental health. Hyperarousal of the sympathetic nervous system with sustained allostatic load along the Hypothalamic Pituitary Adrenal (HPA) axis and its connections has been theorized as the basis for adult psychopathology following early childhood trauma. In this review we synthesize current understandings and hypotheses concerning the neurobiological link between childhood trauma, the HPA axis, and adult psychiatric illness. We examine the mechanisms at play in the brain of the developing child and discuss how adverse environmental stimuli may become biologically incorporated into the structure and function of the adult brain via a discussion of the neurosequential model of development, sensitive periods and plasticity. The HPA connections and brain areas implicated in ELS and psychopathology are also explored. In a targeted review of HPA activation in mood and psychotic disorders, cortisol is generally elevated across mood and psychotic disorders. However, in bipolar disorder and psychosis patients with previous early life stress, blunted cortisol responses are found to awakening, psychological stressors and physiological manipulation compared to patients without previous early life stress. These attenuated responses occur in bipolar and psychosis patients on a background of increased cortisol turnover. Although cortisol measures are generally raised in depression, the evidence for a different HPA activation profile in those with early life stress is inconclusive. Further research is needed to explore the stress responses commonalities between bipolar disorder and psychosis in those patients with early life stress.
Highlights MDD is associated with larger right sided medial nuclei amygdala volumes. MDD is associated with increased right:left whole and substructural volume ratios. MDD cortisol inversely correlated with left corticoamygdaloid transition area. The study implies the potential importance of amygdala substructure volumes in MDD.
Background The hippocampus has for long been known for its ability to form new, declarative memory. However, emerging findings across conditions in the psychosis spectrum also implicate its role in emotional regulation. Systematic reviews have demonstrated consistent volume atrophic changes in the hippocampus. The aim of the systematic review and metanalysis which will follow from this protocol will be to investigate the volume-based neuroimaging findings across each of the subfields of the hippocampus in psychosis independent of diagnosis. Methods Volume changes across subfields of the hippocampus in psychotic illnesses will be assessed by systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). MRI neuroimaging studies of patients with a definitive diagnosis of psychosis (including brief pre-diagnostic states) will be included. Studies lacking adequate controls, illicit drug use, medical psychosis, history of other significant psychiatric comorbidities, or emphasis on age groups above 65 or below 16 will be excluded. Subfields investigated will include the CA1, CA2/3, CA4, subiculum, presubiculum, parasubiculum, dentate gyrus, stratum, molecular layer, granular cell layer, entorhinal cortex, and fimbria. Two people will independently screen abstracts from the output of the search to select suitable studies. This will be followed by the two reviewers performing a full-text review of the studies which were selected based on suitable abstracts. One reviewer will independently perform all the data extraction, and another reviewer will then systemically check all the extracted information using the original articles to ensure accuracy. Statistical analysis will be performed using the metafor and meta-packages in R Studio with the application of the random-effects model. Discussion This study will provide insight into the volumetric changes in psychosis of the subfields of the hippocampus, independent of diagnosis. This may shed light on the intricate neural pathology which encompasses psychosis and will open avenues for further exploration of the structures identified as potential drivers of volume change. Systematic review registration PROSPERO CRD42020199558
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.