Due to the growth of multimedia applications, the need of information security has been become a necessity in this modern technology. The encryption and decryption is used to securely transmit data in open network. The encryption will hide the information that is not visible to anyone using a key. The different techniques should be used to protect confident image data from unauthorized access. This paper is about encryption and decryption of image using a symmetric key called as 64 bit blowfish is designed in the MATLAB software. This proposed algorithm will increase the security and improve performance by reduces the encryption and decryption time. This algorithm uses a variable key of size 448 byte that provide more reliable and secure than any other algorithm. In this, four S-boxes lookup, multiplication as well as fixed and data dependent rotation will be used.
This research looked into the viability of using metaheuristic algorithms in conjunction with an adaptive neurofuzzy system to predict seismicity and earthquakes. Different metaheuristic algorithms have been combined with an artificial intelligence (AI) algorithm. Subjected to seismicity is a promising factor. The new sensors have many advantages over the older, more impressive-looking ones, including (a) a generally linear relationship between the measured values and real ground motion (described above), (b) the ability to measure three orthogonal components of ground movement in a single unit, (c) sensitivity to a very broad range of frequencies, and (d) high dynamic range, which allows for the detection of both very small and fairly large tremors. To accept the acquired results as a hybrid model of an adaptive neurofuzzy inference system with particle swarm optimization (PSO), genetic algorithm (GA), and extreme machine learning (ELM) (ANFIS-PSO-GA-ELM) implemented. According to the dataset, all approaches produce excellent and realistic predictions of seismic loads; however, the method ANFIS-PSO produces better results. All the strategies demonstrated a high level of predictability. Finally, this research urges researchers to investigate the performance of triple hybrid MT algorithms using a variety of hybrid metaheuristic methodologies, rather than the existing double hybrid MT algorithms.
Parameters related to earthquake origins can be broken down into two broad classes: source location and source dimension. Scientists use distance curves versus average slowness to approximate the epicentre of an earthquake. The shape of curves is the complex function to the epicentral distance, the geological structures of Earth, and the path taken by seismic waves. Brune’s model for source is fitted to the measured seismic wave’s displacement spectrum in order to estimate the source’s size by optimising spectral parameters. The use of ANFIS to determine earthquake magnitude has the potential to significantly alter the playing field. ANFIS can learn like a person using only the data that has already been collected, which improves predictions without requiring elaborate infrastructure. For this investigation’s FIS development, we used a machine with Python 3x running on a core i5 from the 11th generation and an NVIDIA GEFORCE RTX 3050ti GPU processor. Moreover, the research demonstrates that presuming a large number of inputs to the membership function is not necessarily the best option. The quality of inferences generated from data might vary greatly depending on how that data is organised. Subtractive clustering, which does not necessitate any type of normalisation, can be used for prediction of earthquakes magnitude with a high degree of accuracy. This study has the potential to improve our ability to foresee quakes larger than magnitude 5. A solution is not promised to the practitioner, but the research is expected to lead in the right direction. Using Brune’s source model and high cut-off frequency factor, this article suggests using machine learning techniques and a Brune Based Application (BBA) in Python. Application accept input in the Sesame American Standard Code for Information Interchange Format (SAF). An application calculates the spectral level of low frequency displacement (Ω 0), the corner frequency at which spectrum decays with a rate of 2(f c ), the cut-off frequency at which spectrum again decays (f max ), and the rate of decay above f max on its own (N). Seismic moment, stress drop, source dimension, etc. have all been estimated using spectral characteristics, and scaling laws. As with the maximum frequency, fmax, its origin can be determined through careful experimentation and study. At some sites, the moment magnitude was 4.7 0.09, and the seismic moment was in the order of (107 0.19) 1023. (dyne.cm). The stress reduction is 76.3 11.5 (bars) and the source-radius is (850.0 38.0) (m). The ANFIS method predicted pretty accurately as the residuals were distributed uniformly near to the centrelines. The ANFIS approach made fairly accurate predictions, as evidenced by the fact that the residuals were distributed consistently close to the centerlines. The R2, RMSE, and MAE indices demonstrate that the ANFIS accuracy level is superior to that of the ANN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.