The fact that viruses cause human cancer dates back to the early 1980s. By reprogramming cellular signaling pathways, viruses encoded protein that can regulate altered control of cell cycle events. Viruses can interact with a superfamily of membrane bound protein, receptor tyrosine kinase to modulate their activity in order to increase virus entrance into cells and promotion of viral replication within the host. Therefore, our study aimed at screening of inhibitors of tyrosine kinase using natural compounds from olive. Protein tyrosine kinase (PTK) is an important factor for cancer progression and can be linked to coronavirus. It is evident that over expression of Protein tyrosine kinase (PTK) enhance viral endocytosis and proliferation and the use of tyrosine kinase inhibitors reduced the period of infection period. Functional network studies were carried out using two major PTKs viz. Anaplastic lymphoma kinase (ALK) and B-lymphocytic kinase (BTK). They are associated with coronavirus in regulation of cell signaling proteins for cellular processes. We virtually screened for 161 library of natural compounds from olive found overexpressed in ALK and BTK in metastatic as well as virus host cells. We have employed both ligand and target-based approach for drug designing by high throughput screening using Multilinear regression model based QSAR and docking. The QSAR based virtual screening of 161 olive nutraceutical compounds has successfully identified certain new hit; Wedelosin, in which, the descriptor rsa (ratio of molecular surface area to the solvent accessible surface area) plays crucial role in deciding Wedelosin’s inhibitory potency. The best-docked olive nutraceuticals further investigated for the stability and effectivity of the BTK and ALK during in 150 ns molecular dynamics and simulation. Post simulation analysis and binding energy estimation in MMGBSA further revealed the intensive potential of the olive nutraceuticals in PTK inhibition. This study is therefore expected to widen the use of nutraceuticals from olive in cancer as well as SARS-CoV2 alternative therapy.
SARS-CoV-2 has emerged as a life-threatening virus claiming number of lives and adversely affecting the physical, mental health and economic growth world-wide. There is an urgent need to treat this life threatening condition as it is adversely affecting the mankind. Because of the pandemic, the global economic rate has declined by several folds. Initially, FDA approved drugs for other diseases have been repurposed for treatment, but these therapeutic strategies do not provide targeted treatment to treat Covid-19. Broad spectrum antiviral drugs, their combinations and life supporting systems provide effective result to inhibit viral entry and replication. Other therapeutic options like Angiotensin converting enzyme-2 (ACE2) blockers and Transmembrane protease, serine 2 (TMPRSS2) inhibitors and plasma therapy have proven to have greater potential to target the virus. In this review, we have discussed a number of therapeutic interventions like use of antiviral drugs, drug combination therapy and other therapeutics that are currently exhibiting effective results and helping to lower the mortality rate significantly. Vaccine is the best option as it elicits immune response and provides long-term immunity to fight against such infections. This review also focuses on the current vaccine development scenario practiced worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.