BMPR1B is a type 1B receptor of the canonical bone morphogenetic protein (BMP)/Sma- and mad-related protein (Smad) signaling pathway and is well known as the first major gene associated with sheep prolificacy. However, little is known about the transcriptional regulation of the ovine BMPR1B gene. In this study, we identified the ovine BMPR1B gene promoter and demonstrated that its transcription was regulated by Smad4. In sheep ovarian follicles, three transcriptional variants of BMPR1B gene with distinct transcription start sites were identified using 5′ RACE assay while variants II and III were more strongly expressed. Luciferase assay showed that the region −405 to −200 nt is the PII promoter region of variant II. Interestingly, two putative Smad4-binding elements (SBEs) were detected in this region. Luciferase and ChIP assay revealed that Smad4 enhances PII promoter activity of the ovine BMPR1B gene by directly interacting with SBE1 motif. Furthermore, in the ovine granulosa cells, Smad4 regulated BMPRIB expression, and BMPRIB-mediated granulosa cells apoptosis. Overall, our findings not only characterized the 5’ regulatory region of the ovine BMPR1B gene, but also uncovered a feedback regulatory mechanism of the canonical BMP/Smad signaling pathway and provided an insight into the transcriptional regulation of BMPR1B gene and sheep prolificacy.
Bone morphogenetic protein receptor type-1B (BMPR1B) is one of the major gene for sheep prolificacy. However, few studies investigated its regulatory region. In this study, we reported that miR-1306 is a direct inhibitor of BMPR1B gene in the ovine granulosa cells (ovine GCs). We detected a miRNA response element of miR-1306 in the 3’ untranslated region of the ovine BMPR1B gene. Luciferase assay showed that the ovine BMPR1B gene is a direct target of miR-1306. qPCR and western blotting revealed that miR-1306 reduces the expression of BMPR1B mRNA and protein in the ovine granulosa cells. Furthermore, miR-1306 promoted cell apoptosis by suppressing BMPR1B expression in the ovine granulosa cells. Overall, our results suggest that miR-1306 is an epigenetic regulator of BMPR1B, and may serve as a potential target to improve the fecundity of sheep.
Selenium, a trace element associated with memory impairment and glucose metabolism, mainly exerts its function through selenoproteins. SELENOM is a selenoprotein located in the endoplasmic reticulum (ER) lumen. Our study demonstrates for the first time that SELENOM knockout decreases synaptic plasticity and causes memory impairment in 10-month-old mice. In addition, SELENOM knockout causes hyperglycaemia and disturbs glucose metabolism, which is essential for synapse formation and transmission in the brain. Further research reveals that SELENOM knockout leads to inhibition of the brain insulin signaling pathway [phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR/p70 S6 kinase pathway], which may impair synaptic plasticity in mice. High-fat diet (HFD) feeding suppresses the brain insulin signaling pathway in SELENOM knockout mice and leads to earlier onset of cognitive impairment at 5 months of age. In general, our study demonstrates that SELENOM knockout induces synaptic deficits via the brain insulin signaling pathway, thus leading to cognitive dysfunction in mice. These data strongly suggest that SELENOM plays a vital role in brain glucose metabolism and contributes substantially to synaptic plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.