In this study, high-order distributed-feedback (DFB) polymer lasers were comparatively investigated. Their performance relies on multiple lasing directions and their advantages include their high manufacturing tolerances due to the large grating periods. Nine laser cavities were fabricated by spin-coating the gain polymer films onto a grating structure, which was manufactured via interference lithography that operated at the 2nd, 3rd, and 4th DFB orders. Low threshold lasing and high slope efficiency were achieved in high-order DFB polymer lasers due to the large grating groove depth and the large gain layer thickness. A high-order DFB configuration shows possible advantages, including the ability to control the lasing direction and to achieve multiple-wavelength lasers. Furthermore, our investigation demonstrates that the increase in threshold and decrease in slope efficiency with an increase in the feedback order can be limited by controlling the structural parameters.
Lasers with multi-wavelength colloidal quantum dots (CQDs) can be achieved using complex grating structures and flexible substrate. The structure contains graduated periods and rectangular cavity fabricated through interference lithography, which acts as the distributed feedback cavity. A layer of densely packed CQD film is deposited on the cavity via spin coating technique. The performance of CQD lasers based on different distributed feedback cavities is investigated. Multi-wavelength lasing is achieved based on a flexible rectangular cavity.
Recently, wearable sensor technology has drawn attention to many health-related appliances due to its varied existing optical, electrical, and mechanical applications. Similarly, we have designed a simple and cheap lift-off fabrication technique for the realization of large-area biocompatible random lasers to customize wearable sensors. A large-area random microcavity comprises a matrix element polymethyl methacrylate (PMMA) in which rhodamine B (RhB, which acts as a gain medium) and gold nanorods (Au NRs, which offer plasmonic feedback) are incorporated via a spin-coating technique. In regards to the respective random lasing device residing on a heterogenous film (area > 100 cm2), upon optical excitation, coherent random lasing with a narrow linewidth (~0.4 nm) at a low threshold (~23 μJ/cm2 per pulse) was successfully attained. Here, we maneuvered the mechanical flexibility of the device to modify the spacing between the feedback agents (Au NRs), which tuned the average wavelength from 612.6 to 624 nm under bending while being a recoverable process. Moreover, the flexible film can potentially be used on human skin such as the finger to serve as a motion and relative-humidity sensor. This work demonstrates a designable and simple method to fabricate a large-area biocompatible random laser for wearable sensing.
In this work, the thermo-optic effect in polymers was used to realize a temperature-tunable whispering-gallery-mode laser. The laser was fabricated using a capillary tube filled with a light-emitting conjugated polymer solution via the capillary effect. In the whispering-gallery-mode laser emission wavelength can be continuously tuned to about 19.5 nm using thermo-optic effect of polymer. The influence of different organic solvents on the tuning rate was studied. For a typical lasing mode with a bandwidth of 0.08 nm, a temperature-resolved tuning rate of ~1.55 nm/°C was obtained. The two-ring coupling effect is responsible for the suppression of the WGM in the micro-cavity laser. The proposed laser exhibited good reversibility and repeatability as well as a sensitive response to temperature, which could be applied to the design of photothermic and sensing devices.
Distributed feedback lasing and surface plasmon lasing were achieved in a single laser device. The laser cavity consisted of a four-layer structure including two metal films, a grating, and a gain material; the cavity was fabricated by combining interference lithography and metal evaporation. A hollow structure was employed to overcome the Joule losses of the metal film. The total thickness of the multilayer structure was 350 nm. The lasing threshold for this hybrid lasing was decreased significantly owing to the coupling between the SP mode in two metal films and the waveguide mode. The combination of SP lasing and distributed feedback lasing could benefit the design of biosensors, all-optical circuits, and electrically pumped devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.