In this study, high-order distributed-feedback (DFB) polymer lasers were comparatively investigated. Their performance relies on multiple lasing directions and their advantages include their high manufacturing tolerances due to the large grating periods. Nine laser cavities were fabricated by spin-coating the gain polymer films onto a grating structure, which was manufactured via interference lithography that operated at the 2nd, 3rd, and 4th DFB orders. Low threshold lasing and high slope efficiency were achieved in high-order DFB polymer lasers due to the large grating groove depth and the large gain layer thickness. A high-order DFB configuration shows possible advantages, including the ability to control the lasing direction and to achieve multiple-wavelength lasers. Furthermore, our investigation demonstrates that the increase in threshold and decrease in slope efficiency with an increase in the feedback order can be limited by controlling the structural parameters.
A fanshaped structure is proposed to achieve a continuously tunable polymer laser. The structure with gradual periods is fabricated by electron beam lithography, which acts as a distributed feedback cavity for the polymer laser. A light-emitting polymer is spin-coated on the cavity to form an active layer. The pump beam is focused by a cylindrical lens to a narrow stripe on the sample surface. When the position of the pump stripe on the fanshaped cavity is changed from long period (370 nm) to short period (340 nm) and vice versa, the output wavelength of the laser is continuously tuned from 584 nm to 552 nm. Tuning behavior can be interpreted by the Bragg condition. These results can be used to explore compact laser sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.