Effective conservation action relies on access to the best-available species data. Reptiles have often been overlooked in conservation prioritization, especially because of a paucity of population data. Using data for 549 reptile populations representing 194 species from the Living Planet database, we provide the first detailed analysis of this database for a specific taxonomic group. We estimated an average global decline in reptile populations of 54-55% between 1970 and 2012. Disaggregated indices at taxonomic, system, and biogeographical levels showed trends of decline, often with wide confidence intervals because of a prevalence of short time series. We assessed gaps in our reptile time-series data and examined what types of publication they primarily originated from to provide an overview of the range of data sources captured in the Living Planet database. Data were biased toward crocodilians and chelonians, with only 1% and 2% of known lizard and snake species represented, respectively. Population time-series data stemmed primarily from published ecological research (squamates) and data collected for conservation management (chelonians and crocodilians). We recommend exploration of novel survey and analytical techniques to increase monitoring of reptiles, especially squamates, over time. Open access publication and sharing of data sets are vital to improve knowledge of reptile status and trends, aided by the provision of properly curated databases and data-sharing agreements. Such collaborative efforts are vital to effectively address global reptile declines.
A new species of microhylid frog Microhyla kodial sp. nov. from the west coast of India is described in this paper. It is distinct from all described species of Microhyla occurring in South and Southeast Asia as revealed by a combination of morphological, molecular and acoustic characters. The new species is characterized by absence of lateral body stripe, tuberculated dorsal skin surface, absence of webbing between fingers, presence of basal webbing between toes and absence of dorsal marginal groove on finger and toe disc. Each male advertisement call lasts for 0.11–0.42 s and is comprised of 2–7 pulses with a dominant frequency of 3.3–4.2 kHz. The breeding season is short, limited to the rainy season (June to September) and the females lay up to 300 eggs per clutch. A molecular phylogenetic tree constructed using the mitochondrial 16S rRNA gene shows that M. kodial sp. nov. is closely related to the M. achatina group from Southeast Asia. The uncorrected genetic divergence between the new species and its closest congeners M. heymonsi, M. mantheyi, M. borneensis and M. orientalis were 7.3–7.6 %, 7.5–7.8%, 7.8–8.1% and 8.1–8.4% respectively. At present, this species is known only from the type locality, a highly disturbed urban and industrialized area which needs conservation intervention.
Isolation of high molecular weight DNA from gastropod molluscs and its subsequent PCR amplification is considered difficult due to excessive mucopolysaccharides secretion which co-precipitate with DNA and obstruct successful amplification. In an attempt to address this issue, we describe a modified CTAB DNA extraction method that proved to work significantly better with a number of freshwater and terrestrial gastropod taxa. We compared the performance of this method with Qiagen ® DNeasy Blood and Tissue Kit. Reproducibility of amplification was verified using a set of taxon-specific primers, wherein modified CTAB extracted DNA could be replicated at least four out of five times but kit extracted DNA could not be replicated. In addition, sequence quality was significantly better with CTAB extracted DNA. This could be attributed to the removal of polyphenolic compounds by polyvinyl pyrrolidone which is the only difference between conventional and modified CTAB DNA extraction methods for animals. The genomic DNA isolated using modified CTAB protocol was of high quality (A260/280 ≥ 1.80) and could be used for downstream reactions even after long-term storage (more than 2 years).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.